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Degradation
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Why equivariance?

Test data often contains perturbations not present in training data.

Complex scalar multiplication:
m Attenuation (magnitude)
m Phase rotation

Complex vector multiplication:
m Channel and receiver effects

Performance of learning algorithms degrades.

Can we learn representations of RF signals that are invariant with
respect to perturbations of the input?

1
R. Chakraborty, Y. Xing, S. Yu, SurReal: complex-valued deep learning as principled transformations on a

rotational Lie group, arXiv preprint arXiv:1910.11334
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Approach

m Use polar coordinates (r, 6)
to represent complex data
z € C\ 0+ 0/ from signals

m Create pseudo-metric that
is invariant to
perturbations.

m Create convolutional layers
that are equivariant
perturbations.

25. Mallat, “Understanding deep convolutional networks, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences. Vol. 374, Issue 2065, 2016.
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Finger Print
Degradation
Signals

Complex signals can be represented as M = R x S?

m St is the unit circle

Ry
m p; € St is identified with

u(6;) = [cos(6;) sin(0;)]
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Degradation

Attenuation and phase rotation can be defined as
G = Ry x SO(2) with operation

o:g1=(rn,R1),& =(n,R)— g =(nrn RR)

_ |cos(¢i)  —sin(¢i)
and R = sin(¢;)  cos(¢))
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Group Action

Finger Print
Degradation

Define a group action x: G x M — M

(r,R)  (x,u(0)) — (rx, Ru(9))

m Attenuation: scalar
multiplication in the real
component x

m Phase rotation: matrix
multiplication R on the
unitary vector u(6)

C. Ramirez
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Pseudo-Metric

Define a function d : M x M — R as:

d?(my, my) = log? (Z) + arccos® (u(62) u(61)))

We use this semi-metric d(-, ) to define a convolutional operation
and show it's invariance to the group action (G, x).
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Invariance

Consider a group element g = (r, R) € G acting on my, mp € M:

d*(g * my, g * my) = log? (r;) + arccos® ((Ru(62)) Ru(61))

d2(g * My, g % M) = dz(ml, my)

d?(g * my, g * mo)
= log?® (”Q) + arccos? ((Ru(62))'Ru(61))

02)/RIRU(91))
02)"u(61))

= log? (”Q) + arccos? (u(
= log? (’X2) + arccos? (u(
= d?(my, my)
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Convolutional Neural Network

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected
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Convolutional Neural Network
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Convolution

Define a convolutional map

N
F{w;, m;} := arg min Z w;d?(m;, m)

meM i—1

N x
arg min Z wj[log? <x> + arccos® (u(0) u(6))]

meM i—1 i

for {m;} € M some signal window and >"N , w; = 1.
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Convolution

F must be unique to show equivariance to the group action (G, %)
gx F({wi}, {mi}) = F({wi},{g  m;})

m F is not properly defined for equally-spaced sets of points
{m;} € M. Given some ordering, {m;} are pairwise ordered
equidistant. We call these sets equidistant.

m {m;} are closed under (G, *): rotating and scaling equidistant
points remain equidistant.

We redefine F piecewise and thus satisfy uniqueness, allowing
equivariance to hold.
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Piecewise Convolution

(]-_[INl Xi B (mln{W,H }) R=0

F({wil,{mi}) = {(H, NoxM ou@) R>0

= R = (SN, wicos(6))? + (S, wsin(6)))?

SN wisin(6;)

| | = ar n
6 = arcta S cos()

6 Z,Nzl w; cos(6;) > 0 and ZlNzl w;sin(0;) >0
d=<Srm+0 Z,N:lwicos(ﬁi)<0
271+ 0 SOV wicos(6;) > 0and SN wisin(6;) < 0
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g x F({wi}, {mi}) = F({wi}, {g * mi})

Equivariance of wFM

135° 45°

180° 0°
° ® sample
+ wFM(sample)
A ® g*sample
L + WFM(g * sample)
o ° o
225 S = 315 o g * wFM(sample)
270°
«4O0)>» «Fr «=»r» « =) = Q>
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Equivariance to Group Action

g * F({wi}, {mi}) = F({wi}, {g * mi})

Setup:

Let m* = F({w;}, {m;}) = arg min > w;d?(m;, m)
meM

Let m = F({w;}, g*{m;}) = arg min > w;d?(g * m;, m)
meM

C. Ramirez Equivariant RFMLS



Radio Frequency Signals
Building Equivariant Network Equations
Equivariance Results Architecture
Future Work

> (g e m, @)

= min ), w,~d2(g % mj, m)
megxM

= _min > W,-d2(g_1g>l< mj, g
g lxmeg—lgxM

by invariance of distance metric

= min > wid?(m;, m**

~1xm)

= Zi W;dz(m;, m*)
by uniqueness of F.
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Part 2

Do Wid2(g* mj, i)

=Y. wd 2(mi, m*)

=", wid?(g * mj, g x m*)

by invariance of distance metric.
= m = g * m", by uniqueness of F.

F({wi},{g*mi}) = m=gxm*=gx F({w;},{mi}) O
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PolarNet

Equations
Architecture

Along each input channel axis, replace the dot product in a
convolutional layer by F.

Input channels

ko WEM

wFM

K
& Stride wFM

wFM along WM
WEM input } e
wEM channels

axis I

Output Channels

wFM

T with kernels
: N
Z wFM
Z wFM
Ky wFM
Features Output Features

C. Ramirez

wFM

Output Channels WM

Output Features
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PolarNet

Invariance of d?(-,-) and equivariance of F(,) allows for the
construction of an invariant layer as the distance from each input
feature m; to F({w;},{m;}).

wFM
wFM —
o — o wiM 0 T Standard ¢
£ wFM 2 2 dense/conv layer 3
& S S g
2 : _—) : z : e
* ol o . <
5 - - 8
3 —_————— > =1 =
o Q o o
E g g g
= wm = =
wFM
wFM N N .
Features Pointwise distances to

wFMs along feature axis
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Model Comparison

PolarNet: polar complex representation (r, )
CartesianNet: Cartesian complex representation (x, y)
Baseline model: our baseline model with default configuration

Modified baseline model: baseline model with modifications to
make the processing closer to PolarNet

C. Ramirez Equivariant RFMLS
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Model Comparison

Input: 31 x 128 Polarilet

0.9 M parameters

Input channels=31
Output channels = 256

Input channels=256
Output channels = 256

Stride = 1
Input channels=256

Output channels = 256

Mmol4 eyeq

Invariant layer
Pseudo-distance + dense FC

C. Ramirez

Input: 31 x 128
2.4 M parameters
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Modified Baseline
Sep conv 1

Stride =2
Input channel
Output channels

Sep conv 2
Stride =2
Input channels=256
Output channels = 256

Sep conv3
Stride =1
Input channels=256
Output channels = 256

GMM layer
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Invariance Error: Non-Normalized

PolarNet with Pseudo Metric CartesianNet with Euclidean Distance
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Invariance Error: Normalized

Radial Scaling

Angular Rotation

RMSE (log-scale)
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PolarNet with Pseudo Metric

Normalized PolarNet Invariance Erfor
RMSE for Radial Scaling Applied to Input
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Invariance Error: Non-Normalized

Radial Scaling Angular Rotation
Modified Baseline Invariance Error Modified Baseline Invariance Error
RMSE for Angular Rotation Applied to I it
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What is PolarNet learning?

WFM kernel in first layer of PolarNet

Weighted
mean of 31
incoming
windows

256 weighted-mean features
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What is PolarNet learning?

Random Wifi Sample from Sim Dataset

1.0 Burst Normalized
i PolarNet Attention
0.0 e e e P A
8+8=16ps
10%08=8ps | 2%08+2x32=80ps 0.8+32=4.0ps | 08+32=40ps| 0.8+32=40ps
1TTT I T TR T T T T T
ﬁxm Giste bty G2 | Ty 1 T  |GISIGNAL|GI| Datal |Gl Data2
P T L
Signal Detect, Coarse Freq.  Channel and Fine Frequency ~ RATE SERVICE + DATA  DATA
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C. Ramirez

Equivariant RFMLS



Radio Frequency Signals
Building Equivariant Network
Equivariance Results

Future Work

Performance: Non-normalized

m No scale normalization
applied in preprocessing,

Test in Unseen Environment

Only mean Centering Non-Normalized Models
m PolarNet outperforms the 0 =
other two models g
m Comparing PolarNet to
g
un-normalized networks =
5 8
shows the inherent ) "
i nva rla nce u Modified Baseline . P;IrarNet CartesianNet
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Performance: Normalized

m Normalize bursts by max
value in preprocessing

Test in Unseen Environment

m Now all models invariant to Normalized Models

radial scaling -
B . 40 43.6
m Modified Baseline model B -
still not invariant to § R
rotations En
m CartesianNet has same 10 i .
invariances as PolarNet but 0 .
iS numerlca”y more Stable u Modified Baseline u PolarNet CartesianNet
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From Complex Scalar to Impulse Response

m The perturbation that we really want to be invariant to is
convolution with an FIR filter.

m In frequency domain, convolution becomes element-wise
multiplication.

m We can extend previous equations to filter perturbations.

m Thus construct a network invariant to filters (channels) in the
frequency-domain.
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FIR Filter

G =R} x T" with T" < SO(2n) the maximal torus subgroup,
and operation o : g1 = (11, T1), 82 = (2, T2) — g3 = (A, T1 T)
where ;7 is element-wise multiplication and T € 7" is of the form:

Ry
R»

with R; € SO(2).

C. Ramirez Equivariant RFMLS



Radio Frequency Signals
Building Equivariant Network
Equivariance Results

Future Work

M=R" x 8 x - x 8} with
S = [d1(61) - Gn(0n)] € S} x - -+ x S} a block diagonal matrix:

[ [coswl)] ]

sin(61)
o]
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Degradation

Group action x: G x M — M as (7, T) x (X,S) — (7%, TS).
Element-wise multiplication in the real component and block
rotation R;|7 at each unitary vector u;(6;)|s.
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Channel-Invariant Network Architecture

angt burst Convolve by

¥ striding down FiR-invariant

H STFT, cc g repr as
& wFMs for N FFTs input to further layers
& at a time

PolarNet wFM layers +

Frequenc
" ¥ invariant distance layer

FFT

Frr/ m/ T

MMM

wFMs between FFTs in STFT

Along frequency bins Ciass logits

N-d invariant
layer

N-dimensional Pseudo Metric
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