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Why equivariance?

Test data often contains perturbations not present in training data.

Complex scalar multiplication:

Attenuation (magnitude)

Phase rotation

Complex vector multiplication:

Channel and receiver effects

Performance of learning algorithms degrades.

Can we learn representations of RF signals that are invariant with
respect to perturbations of the input?

1
R. Chakraborty, Y. Xing, S. Yu, SurReal: complex-valued deep learning as principled transformations on a

rotational Lie group, arXiv preprint arXiv:1910.11334
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Approach

Use polar coordinates (r , θ)
to represent complex data
z ∈ C \ 0 + 0i from signals

Create pseudo-metric that
is invariant to
perturbations.

Create convolutional layers
that are equivariant
perturbations.

2
S. Mallat, “Understanding deep convolutional networks, Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences. Vol. 374, Issue 2065, 2016.
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Signals

Complex signals can be represented as M = R+ × S1

S1 is the unit circle

pi ∈ S1 is identified with
u(θi ) = [cos(θi ) sin(θi )]′
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Degradation

Attenuation and phase rotation can be defined as
G = R+ × SO(2) with operation

• : g1 = (r1,R1), g2 = (r2,R2) 7→ g3 = (r1r2,R1R2)

and Ri =

[
cos(φi ) − sin(φi )

sin(φi ) cos(φi )

]
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Group Action

Define a group action ∗ : G ×M→M
(r ,R) ∗ (x , u(θ)) 7→ (rx ,Ru(θ))

Attenuation: scalar
multiplication in the real
component x

Phase rotation: matrix
multiplication R on the
unitary vector u(θ)
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Pseudo-Metric

Define a function d :M×M→ R as:

d2(m1,m2) = log2

(
x2

x1

)
+ arccos2

(
u(θ2)′u(θ1))

)
We use this semi-metric d(·, ·) to define a convolutional operation
and show it’s invariance to the group action (G, ∗).
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Invariance

Consider a group element g = (r ,R) ∈ G acting on m1,m2 ∈M:

d2(g ∗m1, g ∗m2) = log2

(
rx2

rx1

)
+ arccos2

(
(Ru(θ2))′Ru(θ1)

)
d2(g ∗m1, g ∗m2) = d2(m1,m2)

d2(g ∗m1, g ∗m2)

= log2
(
rx2
rx1

)
+ arccos2 ((Ru(θ2))′Ru(θ1))

= log2
(
rx2
rx1

)
+ arccos2 (u(θ2)′R ′Ru(θ1))

= log2
(
rx2
rx1

)
+ arccos2 (u(θ2)′u(θ1))

= d2(m1,m2)
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Convolution

Define a convolutional map

F{wi ,mi} := arg min
m∈M

N∑
i=1

wid
2(mi ,m)

arg min
m∈M

N∑
i=1

wi [log2

(
x

xi

)
+ arccos2

(
u(θ)′u(θi )

)
]

for {mi} ∈ M some signal window and
∑N

i=1 wi = 1.
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Convolution

F must be unique to show equivariance to the group action (G, ∗)

g ∗ F({wi}, {mi}) = F({wi}, {g ∗mi})

F is not properly defined for equally-spaced sets of points
{mi} ∈ M. Given some ordering, {mi} are pairwise ordered
equidistant. We call these sets equidistant.

{mi} are closed under (G, ∗): rotating and scaling equidistant
points remain equidistant.

We redefine F piecewise and thus satisfy uniqueness, allowing
equivariance to hold.
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Piecewise Convolution

F({wi}, {mi}) =

{
(
∏N

i=1 x
wi
i , u(min{wiθi}) R = 0

(
∏N

i=1 x
wi
i , u(θ̂)) R > 0

R =
√

(
∑N

i=1 wi cos(θi ))2 + (
∑N

i=1 wi sin(θi ))2

θ = arctan
∑N

i=1 wi sin(θi )∑N
i=1 wi cos(θi )

θ̂ =


θ

∑N
i=1 wi cos(θi ) > 0 and

∑N
i=1 wi sin(θi ) > 0

π + θ
∑N

i=1 wi cos(θi ) < 0

2π + θ
∑N

i=1 wi cos(θi ) > 0 and
∑N

i=1 wi sin(θi ) < 0
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Equivariance of Convolution

g ∗ F({wi}, {mi}) = F({wi}, {g ∗mi})
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Equivariance to Group Action

g ∗ F({wi}, {mi}) = F({wi}, {g ∗mi})
Setup:
Let m∗ = F({wi}, {mi}) = arg min

m∈M

∑
wid

2(mi ,m)

Let m̃ = F({wi}, g ∗ {mi}) = arg min
m∈M

∑
wid

2(g ∗mi ,m)
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Part 1

∑
i wid

2(g ∗mi , m̃) =
∑

i wid
2(mi ,m

∗)∑
i wid

2(g ∗mi , m̃)
= min

≈
m∈g∗M

∑
i wid

2(g ∗mi ,
≈
m)

= min
g−1∗≈m∈g−1g∗M

∑
i wid

2(g−1g ∗mi , g
−1 ∗ ≈

m)

by invariance of distance metric
= min

m∗∗∈M

∑
i wid

2(mi ,m
∗∗)

=
∑

i wid
2(mi ,m

∗)
by uniqueness of F .
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Part 2

m̃ = g ∗m∗∑
i wid

2(g ∗mi , m̃)
=
∑

i wid
2(mi ,m

∗)
=
∑

i wid
2(g ∗mi , g ∗m∗)

by invariance of distance metric.
⇒ m̃ = g ∗m∗, by uniqueness of F .

∴ F({wi}, {g ∗mi}) = m̃ = g ∗m∗ = g ∗ F({wi}, {mi})
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PolarNet

Along each input channel axis, replace the dot product in a
convolutional layer by F .
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PolarNet

Invariance of d2(·, ·) and equivariance of F(·, ·) allows for the
construction of an invariant layer as the distance from each input
feature mi to F({wi}, {mi}).
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Model Comparison

PolarNet: polar complex representation (r , θ)

CartesianNet: Cartesian complex representation (x , y)

Baseline model: our baseline model with default configuration

Modified baseline model: baseline model with modifications to
make the processing closer to PolarNet
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Performance: Non-normalized

No scale normalization
applied in preprocessing,
only mean centering

PolarNet outperforms the
other two models

Comparing PolarNet to
un-normalized networks
shows the inherent
invariance
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Performance: Normalized

Normalize bursts by max
value in preprocessing

Now all models invariant to
radial scaling

Modified Baseline model
still not invariant to
rotations

CartesianNet has same
invariances as PolarNet but
is numerically more stable
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From Complex Scalar to Impulse Response

The perturbation that we really want to be invariant to is
convolution with an FIR filter.

In frequency domain, convolution becomes element-wise
multiplication.

We can extend previous equations to filter perturbations.

Thus construct a network invariant to filters (channels) in the
frequency-domain.
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FIR Filter

G = Rn
+ × T n with T n ≤ SO(2n) the maximal torus subgroup,

and operation • : g1 = (~r1,T1), g2 = (~r2,T2) 7→ g3 = (~r1~r2,T1T2)
where ~r1~r is element-wise multiplication and T ∈ T n is of the form:

T =


R1

R2

. . .

Rn


with Ri ∈ SO(2).
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Signal

M = Rn
+ × S1

1 × · · · × S1
n with

S = [~u1(θ1) · · ·~un(θn)] ∈ S1
1 × · · · × S1

n a block diagonal matrix:

S =



[
cos(θ1)
sin(θ1)

]
[

cos(θ2)
sin(θ2)

]
. . . [

cos(θn)
sin(θn)

]


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Degradation

Group action ∗ : G ×M→M as (~r ,T ) ∗ (~x , S) 7→ (~r~x ,TS).
Element-wise multiplication in the real component and block
rotation Ri |T at each unitary vector ~ui (θi )|S .
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Channel-Invariant Network Architecture
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The End
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