Machine learning for wireless spectrum awareness Enrico Mattei Greg Harrison Expedition Technology, Inc.

Acknowledgement:

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). <u>Disclaimer</u>:

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

The team

Afsayh Saquib

Brent Marin

Andrew Draganov

Cass Dalton

Enrico Mattei

Greg Harrison

Harry Engoren

Mark Wallace

Ryan Crawford

Stella Yu

Spontaneous speech recognition

Image recognition

The RF community is catching up!

Can we have simpler, machine learned systems?

- This is the era of AI and big data!
- The RF/wireless community is catching up
- Numerous applications:
 - Modulation/demodulation
 - Equalization
 - Channel coding
 - Modulation recognition ...
 - ... and more

Tim O'Shea and Jakob Hoydis, "An introduction to deep learning for the physical layer," IEEE Trans. On Cognitive Comms and Networking, Vol. 3 Issue 4, Dec 2017

	IEEE.org IEEE Xplore Digital Library I	EEE Standards IEEE Spectrum N	Hore Sites	/	Cart Create Account Sign
	ComSoc~ IEEE communications Society		60	6 0	
	ABOUT CONFERENCES	PUBLICATIONS A EDUCATION & CAR		AL LIBRARY STANDARDS	Q 🛃 🖁
1	IEEE JOURN	AL ON			
	SELECTED	AREAS	IN		
	COMMUNI	CATIONS			
	HOME * IEEE JOURNAL ON SELE COMMUNICATION	CTED AREAS IN COMMUNICA	TIONS HOME > CALL FO	R PAPERS » MACHINE LE	ARNING IN WIRELESS
	MACHINE LEARNING IN	WIRELESS COMMUN	ICATION		
	CALL FOR PAPERS			HOME	
-	IEEE JSAC Special Issue	< CURRENT IS	SUE		
	Communication		< CALL FOR PA	PERS	
	Machine learning and data drive enabler for future 5G and beyon	n approaches have recently re d wireless networks. Yet, the	ceived much attention a evolution towards learni	sakey • SUBMITAM	ANUSCRIPT
	based data driven networks is st	omised	OARD		
	where and how ML can really co	rch and development. Fundan mplement the well-established	nental questions remain d, well-tested communic	as to controllar of ation	
	systems designed over the last 4 is likely needed to realize their fi	decades. Moreover, adaptati ul potential in the wireless co	on of machine learning in ntext. This is particularly	methods	
	challenging for the lower layers	of the protocol stack, where the	he constraints, problem	 GUEST EDITO 	RINFO
	formulation, and even the object applied in recent years. In additi	ives may fundamentally differ on, a deep understanding of t	r from the typical scenar he fundamental perform	ios to which machine lea nance limits is also essen	rning has been successfully tial in order to establish

https://www.comsoc.org/jsac/cfp/machine-learning-wireless-communication

Radio Frequency Machine Learning Systems (DARPA-RFMLS)

Task 1: Security in the internet of things (IoT)

IoT security

- MAC addresses are easily spoofed
- Nefarious actor could get unauthorized access

IoT security

- MAC addresses are easily spoofed
- Nefarious actor could get unauthorized access

- MAC addresses are easily spoofed
- Nefarious actor could get unauthorized access

- MAC addresses are easily spoofed
- Nefarious actor could get unauthorized access

$$x(t) = Re\left[\left(\left(h_{re} * Re\left[a(t)e^{j\omega(t)}\right]\right)(t) + j\left(h_{im} * Im\left[a(t)e^{j\omega(t)}\right]\right)(t)\right)e^{j2\pi f_c t}\right]$$

Signal characterization can be achieved by measuring the relationship between the in-phase and quadrature impulse responses of the reconstruction filters

Prior art looks to extract discriminative features by hand:

- Signal/modulation specific
- Need full signal demodulation
- Time consuming and involved process
- Usually designed to work with the dataset at hand (no generalization)

Image courtesy of Y. LeCun

EXPE

ECHNOL

Structured representations to address the challenges in the wireless domain

A generative signal model:

A generative signal model:

 $\begin{array}{l} y \ \sim \ cat\left(1/K\right) & \Box \\ \mathbf{z}|y \ \sim \ \mathcal{CN}\left(\mu_{\mathbf{z}}\left(y\right), diag\left(\sigma_{z}\left(y\right)\right)\right) & \mathsf{La} \\ \mathbf{x}|\mathbf{z} \ \sim \ \mathcal{CN}\left(\mu_{\mathbf{x}}\left(\mathbf{z}\right), diag\left(\sigma_{x}\left(\mathbf{z}\right)\right)\right) & \mathsf{ot} \end{array}$

Source: EXP

In this model, the marginal distribution of the latent signature is a mixture of Gaussians

IoT security: feature learning M $\mathcal{L}\left(\theta,\phi;\boldsymbol{X}\right) = \sum \mathbb{E}_{q_{\phi}\left(\overline{\boldsymbol{z}}|\boldsymbol{X}\right)}\left[\log p_{\theta}\left(\boldsymbol{x}_{\boldsymbol{i}}|\overline{\boldsymbol{z}}\right)\right] - D_{KL}\left(q_{\phi}\left(\overline{\boldsymbol{z}}|\boldsymbol{X}\right)|| p_{\theta}\left(\boldsymbol{z}|y\right)\right)$ i=1Encoder manthantant where we are well and a second

RFMLS datasets

Signal libraries: IoT security

- Large dataset (~11TB) total
- WiFi (~103M) and ADS-B (~3.5M) signals
- Signal metadata in SigMF format (JSON)
- Each metadata file is associated with one binary file that contains the signal data
- Each metadata file can contain thousands of annotations

https://github.com/gnuradio/SigMF

ADS-B 숫

Signal libraries: IoT security

General data collection information:

- Licensing
- Sampling rate
- etc.

Annotations:

- Signal start sample
- Signal end sample
- label

```
"global":{
"core:datatype": "ci16 le",
"core:sample rate": 100000000.000000,
"core:version": "0.0.1",
"core:sha512":
"67bfe16fac96c6e70d3b56fab25e1813c35852cc847b33e9d812407fde5b8e7920f4ff5a67a479653860f83775810c6fe4
e5083ce51064185384".
"core:description": "Interleaved I&Q components. A complete sample is 16 bits of I followed by 16 bits
"core:license": "DARPA RFMLS data use agreement.".
"core:hw": "Receiver: TEKTRONIX.RSA5106B.B040879, FV:3.6.0239. LNA: ZEL-0812LN. Filter: None. Antenna: LP-1019
(vertical polarization).",
"core:extensions": {"capture details":"required".
                   "rfml": "required" },
"capture details:extension version": "1.0",
"rfml:extension version": "1.0",
"rfml:label hierarchy": [["device type"], ["device id"]]
"capture":[
"core:sample start": 0,
"core:frequency": 1090000000.000000,
"core:freq lower edge": 1089500000.000000,
"core:freg upper edge": 1090500000.000000,
"capture details:acg scale factor": "9.313226e-13",
"capture details:attenuation": 0,
"capture details:acquisition bandwidth": 80000000
  1,
"annotations":[
"core:sample start": 3863880,
"core:sample count": 6400,
"capture details:SNRdB": 1.0,
"capture details:signal reference number": "A-5561-10",
"rfml:label": ["ADS-B", "crane-gfi 3 dataset-4"]
1.
"core:sample start": 5696090,
"core:sample count": 6400,
"capture details:SNRdB": 2.8,
"capture details:signal reference number": "A-5561-14",
"rfml:label": ["ADS-B", "crane-gfi 3 dataset-9"]
```

TECHN

Experimental results

Sequence length = 1

Sequence length = 10

Sequence length = 20

Sequence length = 30

Source: EXP

Experimental results: identification

19 bit-wise identical WiFi devices

- Verify that the machine learning system is not just recognizing the MAC address
- All devices were given the same MAC address

Source: EXP

Task 2: spectrum awareness — saliency and control

Frequency

Video recorded using:

http://websdr.ewi.utwente.nl:8901/

- A wideband signal detection problem
- Traditional systems require "signal features" computed a-priori
- Systems are usually designed for the current target set
- Large signal variability in time, frequency, and power

WiFi is up to 800x wider than ADS-B. ADS-B is >40dB higher power than Bluetooth

Frequency http://websdr.ewi.utwente.nl:8901/

The key question: Can we detect the *important* signals in wideband signal data?

Approved for Public Release, Distribution Unlimited

"Important" is defined by the user

Example "important" signals are:

- APCO
- Bluetooth
- CDMA-2000 Forward
- CDMA-2000 Reverse
- DECT
- AIS

just to name a few

Need to find the important signal in complex backgrounds

We can view this task as a semantic segmentation problem

We can view this task as a semantic segmentation problem

TECHNO

TECHNO

TECHNO

TECHNOL

RFMLS datasets

Data rate challenges

- Sample rates 100MHz 500MHz
- Data rates anywhere from 400MB/s to 2GB/s

It would be impossible to handle such high data rates without GPUs

Signal libraries: Saliency and Control

- Dataset expected to be roughly **60TB** in size
- Metadata provided in SigMF format
- Backgrounds and signals of interest provided separately
- Create datasets by a "mix-and-match" scheme

Example important signals:

- 802.11x
- ADS-B
- Bluetooth
- APCO 25 Ph1
- WiMax

https://github.com/gnuradio/SigMF

The dataset supports the following tasks:

• Identify important signals which may be possibly immersed in a complex background of confusors

GNURadio

WIMAX

Bluetooth

- Identify signals deemed important because they are modifications of known signals
- Unsupervised anomaly detection
- Object classification from signal ensemble

Experimental results

Experimental results: saliency Recall the network architecture:

The input is an array of dimensions 256 x 64, that is, 256 windows of 64 IQ samples each Approved for Public Release, Distribution Unlimited

Experiments performed with data simulated using GNU Radio

Experiment 1:

Scenario:

- 10 signal types
- 2 MSps
- "Dynamic channel"
- SNR uniformly distributed on [3dB , 20dB]
- Signal center frequency varied randomly

Training/Eval:

- Trained on 400 random configurations
- Eval on 100 unseen random configurations
- All signals labeled as "important"

BPSK 50k dBPSK_12.5k GFSK 25k GFSK 50k OFDM 16QAM OFDM QPSK 16QAM_50k 64QAM 75k QPSK_100k QPSK_25k

EXPE

Source: EXP

BPSK_50k dBPSK_12.5k GFSK 25k GFSK_50k OFDM 16QAM OFDM_QPSK 16QAM_50k 64QAM_75k QPSK_100k QPSK_25k

EXPE

Source: EXP

Experiments performed with data simulated using GNU Radio

Experiment 2: Scenario:

- 10 signal types
- 2 MSps
- "Dynamic channel"
- SNR uniformly distributed on [3dB , 20dB]
- Signal center frequency varied randomly

Training/Eval:

- Trained on 400 random configurations
- Eval on 100 unseen random configurations
- Only one signal labeled as "important"

<u>Truth</u>

Prediction

Source: EXP

Inference on scenarios 1 & 2 using the same data

	-14-17.				1.00	-	
	-		-		_		
-					-		

Final thoughts

- RFMLS seeks to develop the foundational technologies to make fielded radio frequency machine learning systems a reality
- Potential to revolutionize the well-established field of wireless communications with simpler, more secure systems that can better adapt to a dynamic, increasingly challenging environment

Contact us! (We're hiring!)

Enrico Mattei **Greg Harrison** Expedition Technology, Inc. info@exptechinc.com exptechinc.com (571) 429-6141

