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A Very Brief History of Overhead Imagery
• 1858 – First aerial 

photographs by Nadar from a 
balloon

• 1880s – Tethered kites (upper 
left)

• 1897 – First photograph from 
a rocket

• Early 1900s – "Bavarian Pigeon 
Fleet" (bottom left)

• 1911 – First airplanes during 
Italo-Turkish War

Photos from Wikipedia
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Advances in Imagery 
Platforms and Deep Learning 

enable new opportunities

• Modern Platforms
– Satellites, UAVs, Airplanes

• Why Deep Learning?
– Abundance of high-

resolution imagery 
sources

– Advances in deep learning 
algorithms and hardware

Source: DigitalGlobe - xVIEW Dataset
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Modern Overhead Imagery



Deep Learning & Image Processing
• Deep Learning for Image Classification & Analysis 

– State of the art since 2012 (AlexNet)
– Network Improvements

• Networks are becoming both more efficient and more powerful
• ResNet (2015)

– enabled training of very deep networks (hundreds of layers)

• SqueezeNet (2016), MobileNet v1/2(2017/2018), ShuffleNet(2017)
– fast architectures that maintain quality results

– Hardware advances
• Faster GPUs with Increased Memory (I.e. 32GB V100)
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Network and hardware advances enable practical 
processing of large high-resolution imagery



Applications of DL & Overhead Imagery
Estimating Poverty Rates from 

Nighttime Imagery

http://sustain.stanford.edu

Kaggle Competition:
Classifying land usage in the Amazon

Example Image Chip Classes:

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
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Sponsored Challenges

http://deepglobe.org
Sponsors: Facebook, DigitalGlobe, Purdue, 
and MIT

DeepGlobe Satellite Challenge - CVPR18DIUx xView 2018 Detection Challenge

http://xviewdataset.org
Sponsors: DIUx, NGA
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Industry and government are sponsoring 
challenges to encourage innovation in 
Deep Learning for Overhead Imagery



OVERHEAD/AERIAL IMAGERY 
SENSORS & PRE-PROCESSING
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Overhead Aerial Imagery Sensors
• Satellite Systems

– Revisit Rates: Few times per day
– Sufficient spatial resolution, typically low temporal resolution
– Source of most competition data

• Unmanned Aerial Systems/Vehicles (UAS/UAV)
– High temporal resolution – 30 to 60 FPS available
– High spatial resolution – very low ground sample distance (GSD) values per pixel
– Limited area of regard

• Wide-Area Motion Imagery (WAMI)
– 1 to 2 Hz frame rates
– Gigapixel images – resulting in GSDs of 0.25-0.5m
– Wide-Area of Regard – able to collect small city-sized areas simultaneously
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Wide-Area Motion Imagery (WAMI)
• Wide-area motion imagery (WAMI) sensors

– Flown on helicopters, balloons, small aircraft, or UAVs
– Used to image small city-sized areas at approximately 

0.25-0.5m/pixel and about 1-2 frames/s

• Challenges for Object Detection and Tracking:
– Low spatial resolution – objects of interest are 

very small
– Low temporal resolution – large object 

displacement between frames
– Difficult Georegistration/stabilization - can lead 

to significant motion clutter 
https://www.military.com/defensetech/2016/05/25/logos-touts-new-wide-area-surveillance-sensor

11 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5562653

WAMI sensors enable city-scale object detection 
and tracking – despite some challenges



• Six cameras with ortho-rectified imagery
• Frame Rate: ~1.25 Hz
• Duration: 14 minutes (1,025 frames) with 

~18k ground truth tracks
• WPAFB2009 dataset available at 6 

resolution levels
– Resolution 0 @ ~0.25m GSD
– Resolution 1 @ ~0.5m GSD – typical 

vehicles ~9x9 pixels
– Resolution 2 @ ~1m GSD
– Each remaining level a doubling of GSD 

from there
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Public Dataset:
Wright-Patterson Air Force Base 2009 Dataset (WPAFB2009)

Image: https://www.sdms.afrl.af.mil/index.php?collection=wpafb200912



Public Dataset:
Wright-Patterson Air Force Base 2009 Dataset (WPAFB2009)

Image: https://ieeexplore.ieee.org/document/7158947/13



Public Dataset:
Wright-Patterson Air Force Base 2009 Dataset (WPAFB2009)

14 Image: https://ieeexplore.ieee.org/document/7158947/



Sample WPAFB2009 Clip
• Example of WAMI 

collection from 
WPAFB2009 dataset 

• Zoomed to a single ROI
• Note the jitter and lighting 

artifacts from the six 
sensor images stitched 
together
– Lighting and color 

changes are difficult for 
background subtraction / 
frame differencing 
techniques
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Image Georegistration / Orthorectification
• As the plane circles the region of interest, image mosaic must be stitched 

together and georegistered

Orthographic views project at a right angle to the data 
plane. Perspective views project from the surface onto the 
datum plane from a fixed location.

16 Images: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5562653, https://en.wikipedia.org/wiki/Orthophoto



Motion Analysis of Frame Sequence
Methods for frame-to-frame alignment vary in four 
considerable ways:
1. Feature Space: Information useful for matching

(e.g. key points, edges, Fourier representation, pixel 
intensity)

2. Search Space: Class of transformation
(e.g. translation, Euclidean, affine, homography)

3. Search Strategy: Method to choose the next test 
transformation
(e.g. exhaustive search, relaxation, dynamic 
programming, gradient descent)

4. Similarity Metric: Value of a test transformation
(e.g. sum of squares difference, Enhanced Correlation 
Coefficient[*])

[*] Evangelidis, G.D. and Psarakis E.Z. “Parametric Image Alignment using Enhanced Correlation 
Coefficient Maximization”, IEEE Transactions on PAMI, vol. 32, no. 10, 200817



Result of Perspective Transform
Original Frames Stabilized Frames
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Stabilized images enable increased 
detection and tracking performance



OVERHEAD OBJECT DETECTION
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Traditional Approaches

Kim, Z. Real time object tracking based on dynamic feature grouping with 
background subtraction. CVPR 2008.

Traditional Image Feature-based Approaches
• Background Subtraction
• Vehicle Extraction
• Shadow Removal
• Feature-based

– HOG, SIFT, SURF, BRIEF

Shortfalls:
• Not robust to aerial imagery in motion

– Poor stabilization, georegistration, lighting 
changes, etc.

• Objects typically large relative to image size 
or require erosion-dilation
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Small Object Detection with Deep Learning
• Traditional vs Small Object Detection

– Typical object detection has focused on objects 
that are large relative to the scene

– Commonly 20% of the total image size
– Self-driving car data can have significantly 

smaller objects than ImageNet on the order of 
0.1-1% of pixels

– Truly "Small Objects" in aerial imagery can be 
one millionth of one percent of the image

LaLonde, Rodney, Dong Zhang, and Mubarak Shah. 
"Clusternet: Detecting small objects in large scenes by 
exploiting spatio-temporal information." In Computer Vision 
and Pattern Recognition. 2018.
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Our Vehicle Detection Approach
• Objective

– Discrete detection of vehicles to seed a 
tracker

– Architecture than can process large 
images 

– Favor detections of moving objects
• Reduces false positives from buildings
• Less interest in stationary objects

• Approach
– Fully convolutional network
– Input multiple consecutive frames 

• Allows network to infer object motion
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CRABnet – Vehicle Detection Architecture
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3x3 Atrous
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CRABnet – Output Pincer Block
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Output Detection Heatmap is used for 
Discrete Detections and passed to the tracker



Sample Detection Results 
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OVERHEAD IMAGERY TRACKING
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Small Object Tracking with Deep Learning
• Traditional vs Small Object Tracking

– Typical object tracking has focused on 
objects that are large relative to the scene

– Multi Object Tracking (MOT) Benchmark test 
trackers on crowded scenes of pedestrians

– To repeat: Truly "Small Objects" in aerial 
imagery can be one millionth of one percent
of the image

LaLonde, Rodney, Dong Zhang, and Mubarak Shah. 
"Clusternet: Detecting small objects in large scenes by 
exploiting spatio-temporal information." In Computer Vision 
and Pattern Recognition. 2018.

30



Object Tracking for Self-Driving Cars

• Current research 
focuses on objects 
of a large relative 
size to the scene

• Significant 
research driven by 
self-driving cars

• Example result 
from the Multiple 
Object Tracking 
Benchmark 2016

Clip from MOT16 submission: https://motchallenge.net/tracker/LMP
S. Tang, M. Andriluka, B. Andres, and B. Schiele. Multi people tracking with lifted multicut and person re-
identification. CVPR 2017.
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Approaches to Tracking
Track by (particle) filtering Track by detection Track by matching Visual recurrent tracking

Pros

- Usually very accurate
- Well understood Bayesian 
theory
- Non-linear dynamics

- Usually very accurate
- Can use any detection 
algorithm
- Detect object(s) in every frame

- Usually very accurate
- Builds target appearance model
either offline or online
- Match appearance models from 
frame to frame

- Joint learning of target 
dynamics and appearance
- No Markovian assumption
- Completely trained offline

Cons

- Markovian target motion model
- Large number of particles 
needed
- Target appearance and 
dynamics modeled independently

- Markovian target motion model
- Computationally very expensive
- Target appearance and 
dynamics modeled 
independently

- Markovian target motion model
- Computationally expensive
- Needs high frame rate
- Target appearance and 
dynamics modeled 
independently

- Need large amounts of 
training data
- Can be difficult to train 
depending on the model 
complexity and optimization 
objective

References:
[1] P. Perez, C. Hue, J. Vermaak, M. Gangnet, “Color-based probabilistic tracking,” ECCV, 2002.
[2] S. Hare, A. Saffari, P. H. S. Torr, “Struck: Structured output tracking with kernels,”   ICCV, 2011
[3] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, “Fully-Convolutional Siamese Networks for Object Tracking,” ECCV, 2016
[4] Q. Gan, Q. Guo, Z. Zhang, K. Cho, “First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks,” https://arxiv.org/abs/1511.06425
[5] Gordon, D., Farhadi, A., Fox, D.: Re3: Real-time recurrent regression networks for visual tracking of generic objects. IEEE Robotics and Automation Letters (2018)

One-step 
prediction:

p (Xk|Z1:k�1)

Correction:

p (Xk|Z1:k)
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Recent Challenge Approaches

Image: http://www.votchallenge.net/

Visual Object Tracking (VOT) 
Challenge
• Focuses on short-term (ST), long-

term (ST), and real-time tracking 
of a target object

Deep Learning Usage
• 2013-2014: Dominated by 

traditional CV techniques
– Background-subtraction, 

optical flow, key-point, 
model-based etc.

• 2015: 3 “Deep” trackers out of 62
– 1st and 2nd place by large 

margin
• 2018: all top trackers use “deep” 

feature extractors
– CNNs, ResNets, Siamese 

networks
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State of the art Object Trackers 
all leverage Deep Learning 



Our Tracker Approach

• Learn frame-to-frame target displacement via Recurrent Neural Network (RNN)
- Long Short-Term Memory (LSTM) units used in RNN

• At each time step, the target displacement is the expected value under a 
Gaussian Mixture Model (GMM)

- Negative log-likelihood of training data given the learned GMM acts as a smooth 
loss function
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At each time step, the output GMM is conditioned on 
the current input and the history of ALL previous inputs



Tracker Approach

References:
[1] A. Graves, “Generating sequences  with recurrent 
neural networks,” https://arxiv.org/abs/1308.0850
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Tracker Samples – Early Training Progress

Truth Location

Predicted Location
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After 12,000 steps – GMM output can barely locate the 
correct vehicle and typically loses track immediately



Tracker Samples – Further Progress

Truth Location

Predicted Location
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After 30,000 steps – GMM output able to locate the vehicle, 
but does not react quickly to changes in vehicle dynamics



Tracker Samples – Fully Trained Model

Truth Location

Predicted Location
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After 400,000 steps – GMM output able to 
track the vehicle well once lock is established



Results on WPAFB

Training Setup
Resolution 1: ~0.5m GSD

Regions of Interest Data split into five distinct 
ROIs

Sequence Length 20 Frames

Training Set First 850 WPAFB Frames

Target Split Approximately half moving, 
half stationary targets

Evaluation Setup
Evaluation Set Final 150 WPAFB Frames

Detections Truth data is used to seed 
the initial tracker position

Track Death / Rebirth Tracks are re-seeded to 
the truth position when a 
track is lost

Note: Current results are trained on the entire ROI and tested on 
held out frames.  Future results will test extrapolation to new 
scenes.
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Evaluation Results Video
• Ground truth

– Labeled as Blue
• Tracker Prediction

– Predicted boxes are 
colormapped against 
IOU

– Yellow is full overlap
– Bright Red for lost 

track

0.0 IOU 1.0
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Tracker Results Seeded from Ground Truth
• Sample Result on Full Scene

0.
0

IO
U

1.
0

When the tracker 
loses the target 
vehicle it is reset 
to the true vehicle 
location (a frame 
of bright red will 
be shown)
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Tracker Results Seeded from Ground Truth
• Sample Result on Neighborhood Scene
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When the tracker 
loses the target 
vehicle it is reset 
to the true vehicle 
location (a frame 
of bright red will 
be shown)



Tracker Results Seeded from Ground Truth
• Sample Result on Complex Scene – Overpass/Underpass

When the tracker loses the 
target vehicle it is reset to 
the true vehicle location 
(and a frame of bright red 
will be shown)

43

0.
0

IO
U

1.
0



Performance Metrics on WPAFB Dataset
Full Scene Single Object Tracker Performance – 153 Evaluation Frames
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Median Fragmentation 3.0

Mean Fragmentation 4.4

Median Track Length 10

Mean Track Length 19

End-to-End Track Manager will further reduce 
fragmentation by re-associating fragmented tracks.



NEXT STEPS:
END-TO-END TRACK MANAGEMENT
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End-to-End Tracking
• Given a set of detections and current tracks

– Are all current detections mapped to an active 
track?

– Are all active tracks still tracking a valid object?
• Traditional Association Methods

– Global Nearest Neighbor
– Hungarian/Munkres Algorithm / Linear Assignment
– Multi-Hypothesis Tracking
– Markov Chain Monte Carlo Methods

• Proposed Solution – Two Staged Approach
– Run Detector -> Tracker in parallel 
– Run Supervisory RNN network to map detections 

to tracks to address death/birth/reassociation
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Which track is correct?



Output of Detector Seeds Tracker
Discrete CRABnet Mover Detections Feed the MDN Tracker Network
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Supervisory RNN Monitors Tracks/Detections
• Feed output of the Detector and Tracker into a RNN-based Online Multi-

Target Track Association Network
– Manage Birth, Death and Re-association of Tracks
– Leverage visual feature layers from Tracker to assist re-association

Mixture Density Net 
Tracker

Online Multi-target Tracking Using Recurrent Neural Networks
A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, K. Schindler. In: AAAI 2017

CRABnet Detector
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WRAP-UP
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Future of Deep Learning and Overhead Imagery
• Advancements in Imagery 

– Higher resolution imaging sensors
• 150+ MP single sensors (Phase One IQ4 150MP) @ 1.4 FPS
• 35+ MP Video Sensors (RED MONSTRO/HELIUM 8K) @ 60 FPS

– Advances in satellite constellations
• Higher revisit rates / Improved resolutions

• Advances in Deep Learning Hardware & Algorithms
– Faster Hardware with Increased Memory

• i.e. V100 with 32GB enables larger base images
– More efficient algorithms 

• Faster executing and faster converging architectures (MobileNet v2)
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Advances in Imagery and Deep Learning Open 
the Door to New Opportunities
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Contact Us

We're hiring!

Machine Learning, Image Processing, 
RF Signal Processing, Navigation & Autonomy

https://www.exptechinc.com/pages/careers/

Ryan Crawford
Expedition Technology, Inc.

E-mail - ryan.crawford(at)exptechinc.com
(571) 429-6141
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