
 Abstract-	An outlier detection, usually called measurement 
editing, is commonly used by data fusion algorithms.  In a 
typical implementation, a measurement is accompanied by 
an estimate for its standard deviation.   If the measurement 
residual exceeds some multiple of standard deviations (e.g., 
4), the editing algorithm rejects this measurement as an 
outlier.  The standard approach does not provide any 
guidance for setting the threshold.  A threshold that is too 
low rejects legitimate measurements, and the filter may get 
“stuck” in a wrong state.  A threshold that is too high lets 
outliers in, affecting the quality of a solution.  A modern 
navigation system integrates data from different sensors 
that have different error statistics, including the amount 
and the severity of outliers.  A sensor-specific approach for 
treating outliers becomes a necessity.   

For a Gaussian statistics, large residuals are exponentially 
rare, and outliers are not an issue.  Unfortunately, the 
nature rarely follows Mr. Gauss; any hopes to salvage the 
situation by invoking the Central Limit Theorem are 
crushed by a Gaussian’s extremely slow convergence at the 
tails.  In practice, “fat tails” are quite common and are at 
the root cause of solution errors due to outliers.    

In this paper, we present two new method of detecting and 
treating outliers.  These methods are consistent with the 
general philosophy of optimal fusion: process only the data 
that is needed, with weights that accurately reflect data 
error statistics.   

The first method uses Pickands - Balkema - de Haan 
(PBdH) theorem to detect fat tails.  For any particular 
sensor, we pre-process large amount of data and estimate 

the statistics of the tail of the error distribution.  We derived 
a formulation that translates the tail statistics into 
actionable outlier rejection algorithm and/or into a means 
for pre-processing measurements before they are fed into a 
navigation filter.  In a simple case, the algorithm is similar 
to the conventional threshold for measurement editing; 
however, the magnitude of this threshold is now tailored to 
the statistics of measurement errors for the sensor in 
question.  We processed real data from multiple navigation 
sensors to test this algorithm in practice.  While some 
sensors are nearly outlier-free, others (e.g., magnetic 
compass) are not.  The measurement editing threshold for 
such sensors is significantly lower; for example, for a 
magnetic compass the optimal threshold is only at 
approximately two standard deviations of the measurement 
noise.   

The second method uses pattern recognition in the data to 
detect faulty measurements.  At each time epoch, the 
algorithm processes recent measurements from a brief 
rolling window.  The application of the algorithm includes 
a training stage, where multiple sets of measurements in the 
window are collected and categorized.  After the training 
has been completed, the algorithm can detect an outlier at 
epoch N by looking at the pattern of measurements at 
epochs (N-n), (N-n+1), …, N.  This algorithm was 
implemented and tested in real time.  The results show 
reliable detection of outliers in a sensor with a small form 
factor and with limited computational resources.   

Finally, we present an approach that integrates the above 
two outlier detection algorithms.  While they may appear 
unrelated, there is a way to combine them in a 
mathematically sensible way. 
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I. INTRODUCTION 

A modern navigation system integrates data from different 
sensors that have different error statistics, including the amount 
and the severity of outliers.  A sensor-specific approach for 
treating outliers becomes a necessity.   
An outlier detection, usually called measurement editing, is 
commonly used by data fusion algorithms.  In a typical 

implementation, a measurement is accompanied by an estimate 
for its standard deviation.   If the measurement residual exceeds 
some multiple of standard deviations (e.g., 4σ ), the editing 
algorithm rejects this measurement as an outlier.  The standard 
approach does not provide any guidance for setting the 
threshold.  A threshold that is too low rejects legitimate 
measurements, and the filter may get “stuck” in a wrong state.  
A threshold that is too high lets outliers in, affecting solution 
quality [1].   

In a Kalman filter, measurement editing detects undeniable 
occurrences of outliers, but lacks a means of doing that in the 
“gray area”.  If a 4σ  residual indicates an outlier, what can we 
say about a 3.8σ  residual?  Note that there are probably more 
data in the “gray area” than that well above a threshold, which 
exacerbates the problem.  A similar challenge arises for a 
particle filter, where the filter algorithm can use the full 
measurement error statistics, including that for the tails, as long 
as this statistics is known.  However, an unknown tail statistics 
can quickly lead to degeneration of the particle population.   

In this paper, we present two algorithms for detecting outliers: 

1. The first algorithm is based on recent advances in detecting 
and characterizing “fat tail” distributions, which helped the 
insurance industry to quantify the probability of rare, but 
catastrophic events using Pickands-Balkema-de Haan 
theorem [2].  To the best of our knowledge, the first use of 
this theory to navigation applications was presented in [3]. 

2. The second algorithm uses pattern recognition for a sliding 
window of measurements.  The idea is to process a 
sufficiently large dataset, where outliers are identified 
(e.g., due to a comparison with a high-quality “truth” data) 
and to learn the temporal behavior of successive 
measurements.  After the learning stage is complete, a 
system detects outliers by comparing the current sequence 
of measurements with the learned one.  Previously, a 
similar approach was used in [4].   

II. OUTLIERS AND THE DISTRIBUTION TAILS 

A.	Tail	Distributions	in	the	Measurement	Error	Statistics	
For a Gaussian statistics, large residuals are exponentially rare, 
and outliers are not an issue (this is discussed in more detail 
below).  Unfortunately, the nature rarely follows Mr. Gauss; 
any hopes to salvage the situation by invoking the Central Limit 
Theorem are crushed by a Gaussian’s extremely slow 
convergence at the tails.  In practice, “fat tails” are quite 
common and are at the root cause of solution errors due to 
outliers.   Fig. 1 shows two examples of a Gaussian distribution 
with power law tails that we obtained from a Monte-Carlo 
simulation.  The pdf is plotted using the logarithmic scale; on 
this scale a plot of a Gaussian would look like a parabola.  We 
can see that the hump of the distribution does follow a Gaussian, 
but a tail violates this pattern.  Depending on the power law 
exponent and the relative frequency of outliers, the transition 
between the Gaussian portion and the tail occurs at different 
values: at approximately σ2  for the blue curve and at σ5  for 
the red.  If we process two data streams with the two statistics 
shown in Fig. 1, we may need to set outlier editing thresholds 
differently for them.   

We propose a new method of detecting and treating outliers, 
which is custom-tailored to the error statistics for each sensor.  
This method is consistent with the general philosophy of 
optimal fusion: process only the data that is needed, with 
weights that accurately reflect data error statistics.  It is based 
on the Pickands - Balkema - de Haan (PBdH) theorem.  Just as 
the Central Limit Theorem shows that the main hump 
converges to a Gaussian, PBdH shows that tails converge to the 
generalized Pareto distribution (GPD).  We will use PBdH to 
monitor the measurements and to set outlier thresholds 
dynamically.   
 

To illustrate the way the tail shape affects the outlier threshold,  
we consider a simple one-dimensional case.  We assume that 

 
Figure 1. Examples of a Gaussian distribution with power law 
tails.  Depending on the magnitude, the tail dominates the 
Gaussian at different values of x. 



the a priori state is Gaussian, and the measurement distribution 
function has a Gaussian main hump and a power law tail 

( ) ( ) α−−∝ mtail xxxP .  Note that for large deviations from 
the mean, a power law tail always “beats” the Gaussian 
exponent: the distribution function there is dominated by the 
tail. 

For a joint probability, we compute the product of these two 
distribution functions.  If the measurement residual is not large 
as compared to both standard deviations, the product of two 
distribution functions will have a Gaussian hump.  This is the 
case of a normal processing, and it is a standard exercise that 
yields Kalman filter equations.  However, if the residual is 
large, the Gaussian hump of the a priori distribution will be 
located on the power law tail of the measurement distribution 
function (Fig. 2).  Then the posteriori likelihood is given by (the 
normalization constant is not shown for brevity): 
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The mean of this distribution can be computed via the Gamma 
function, but it is easier to compute the most likely value, with 
the result being almost the same: 
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This means that in the case of fat tails, processing a 
measurement with a large enough residual does not update the 
filter state.  We may as well achieve the same result by not 
processing this measurement at all.  This is the true reason for 
measurement editing in a Kalman filter, which is usually 
applied as an ad hoc algorithm.   

The reason for this rudimentary one-dimensional mathematical 
treatment is that it opens doors to an entirely new way of 
handling outliers.  Measurements with small residuals should 
be processed by a conventional Kalman filter algorithm (or by 
its nonlinear/non-Gaussian extension).  However, optimal 
processing of measurements with large residuals should use 
specific features of that sensor’s error statistics.  If the residual 
appears “large” (e.g., is equal to σ4 ), but the error statistics is 
close to a Gaussian, this still may be a valid measurement to 
process by the filter (i.e, this measurement is not an outlier).  
However, if we are able to determine that for a particular 
measurement, the error statistics is dominated by a fat tail (e.g., 
power law), the effect of that measurement on the state must be 
reduced (though not necessarily completely dropped).  In this 
scheme, outlier processing is optimally tailored to the true error 
statistics for each particular sensor.   

Fortunately, recent advances in statistics produced new tools for 
estimating tail distributions.  The gold standard is provided by 
the Pickands – Balkema – de Haan (PBdH) theorem.  Just as the 
Central Limit Theorem shows that the main hump converges to 
a Gaussian, PBdH shows that tails converge to a Generalized 
Pareto Distribution.  The Generalized Pareto Distribution 
(GPD) is given by 

 
Figure 2. A priori pdf may lie on the tail of the measurement 

distribution. 

 
Figure 3. A block diagram of the outlier detection algorithm. 
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and has two parameters, a  and ξ .  Depending on the values 
of these parameters, GPD can model power and exponential 
tails. From a set of observed outliers, parameters  a  and ξ  can 
be estimated by maximizing a likelihood.  We will use PBdH to 
monitor the measurements and to set outlier thresholds 
dynamically.   

By definition, measurements in the tail of distributions are rare, 
so data must be collected over a relatively long period.  The 
algorithm keeps the tally of outliers that may extend beyond a 
single mission when necessary.  A block diagram of this 
algorithm is shown in Fig. 3. Residuals are collected over time 
and processed by a cumulative least squares estimator.  The 
estimator produces parameters of the Generalized Pareto 
Distribution for the tail.  These parameters are supplied to the 
filtering algorithm that uses them to de-weight outliers or reject 
them outright.   

B.	Where	is	the	tail	attached?	
The maximum likelihood estimation of GPD parameters is not 
sufficient by itself to be used it in navigation applications.  To 
fill the gap to its practical use, we need to do two things: 

1. Establish a way to select a threshold dynamically.  Note 
that the GPD parameter estimation uses samples above a 
threshold, but how this threshold is selected in practice? 

2. Develop an algorithm for rejecting or processing specific 
measurements, depending on the estimated probability 
distributions (both the main hump and the tail) 

Here we can kill two birds with one stone.  A threshold will 
serve two purposes: samples above it (1) are used for GPD tail 
estimation using maximum likelihood, and (2) are rejected from 

processing by the navigation filter.  The idea is to find a value, 
where the “tail attaches to the hump” (Fig. 4).   

We assume that the main hump has a Gaussian shape, and that 
its standard deviation is known (it is easy to estimate it in 
practice).  The tail obeys the GPD distribution.  To set the 
threshold, we seek the value, where the distribution starts to be 
dominated by the tail, rather than by the Gaussian main hump.  
It is surprisingly easy to show that this condition is given by: 
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where u~  is the estimate for the threshold, a  is the parameter 
of the GPD tail, and w  is the fraction of the samples above the 
threshold.   

III. REAL DATA PROCESSING 

A performance for real data is always the key test of any new 
algorithm.  We used the data, which were originally collected 
for the DARPA’s ASPN program [5].  There are several 
datasets available, each with multiple sensors; we selected a 
dataset for a driving scenario in a city.  We used an odometer 
and a magnetic compass sensor for measurement updates and 
IMU data for the time update.  If the initial user position is 
known, and if the altitude of the driving user is confined to the 
terrain, then heading (from the compass) and distance travelled 

 
Figure 4. "Fond of [the tail]?" -- "Attached to it," said Winnie-

the-Pooh sadly. 

 
Figure 5. Time series plot of the heading measurement error 

showing outliers in the data 



(from the odometer) is sufficient to estimate the trajectory.  This 
computation is hindered by outliers in the magnetic compass 
measurements, which are relatively common. Fig. 5 shows 
measurement errors with respect to the true heading (which is 
also available in the data from a set of highly accurate sensors).  
We can see, that outliers are common in the data; histogram of 
these errors is shown in Fig. 6.  Fig. 7 shows the same histogram 
on the log scale (red curve); while most measurements in the 
main hump have errors of few hundredth of a radian, there are 
outliers, with errors an order of magnitude higher. It is precisely 
the outlier editing threshold for the magnetic compass 

measurements, which we estimated in this test.  For reference, 
we show the standard deviation of the main hump of the 
distribution function (a vertical green line). The PBdH tail 
estimation and the subsequent “tail attachment” point 
computation (see Equation (4)) put the estimated threshold at 
only 2.19 multiple of the standard deviation for the main hump 
of the distribution function (magenta).  This is less than 
multiplier values that are commonly used in filtering (e.g., 4).  
Note that we compute the standard deviation for the main hump 
only, defined as the point, where the pdf decreases by a factor 
of 𝑒𝑥𝑝 −1/2 ; this effectively cuts off the effect of outliers on 
the computation of standard deviation.  Had we computed the 
standard deviation for the entire set (including the tail), the 
standard deviation would be larger, and the optimal outlier 
threshold would be at even lower multiplier value.   

The navigation solution algorithm is as follows: at each epoch, 
we compare the IMU-propagated heading with the current 
magnetic compass measurement.  If the residual is below the 
threshold, the compass measurement is processed and the 
solution is updated.  The solution is advanced using heading and 
odometer measurements.  However, if the residual is above the 
threshold, the compass measurement is edited (dropped) and the 
heading is set to the value, which is predicted by IMU 
propagation.   

This algorithm creates a tradeoff for setting an outlier editing 
threshold.  If a threshold is set low, relatively many compass 
measurements are rejected as outliers; therefore, the trajectory 
solution will rely more on IMU propagation, which is prone to 
error accumulation.  On the other hand, if the threshold is set 
high, some outliers may trickle through to filter processing, 
corrupting the solution.  Intuitively, there should be an optimal 
outlier rejection threshold, which achieves the best accuracy.  

 
Figure 8. The navigation error as a function of outlier 

threshold.  The optimal threshold corresponds to a lower 
error.   

 
Figure 6. A histogram of heading measurement errors. 

 
Figure 7. Log histogram of heading measurement errors.  The 

main hump has a parabolic shape near the maximum.  The 
optimal threshold is computed from a least square fit to a GPD  

 



Indeed, as we ran the trajectory estimation algorithm multiple 
times using a range of outlier thresholds, the tradeoff between 
small and large thresholds becomes evident.  Fig. 8 shows the 
RMS navigation error vs. magnetic compass threshold (blue 
curve). There is a clear minimum where the error is not 
dominated by propagation, nor by outliers.  This minimum is 
shown by a dashed green line.  The estimate for the optimal 
threshold from our algorithm is shown as a magenta line (same 
as in Fig. (7)).  They do not coincide, but are still close in value.  
We can see that our algorithm estimates an outlier threshold, 
which allows to cut off most outliers, preserve most legitimate 
measurements and thus achieve a better navigation 
performance.   

IV. PATTERN RECOGNITION APPROACH 

The basic idea for the second approach is to train a pattern 
recognition algorithm using large amounts of data where true 
velocity measurements are available.  After training the 
algorithm, it should be able to identify similar patterns in the 
future.  In essence, the algorithm assumes that there are certain 
patterns in the legitimate data, and a drastic departure from 
these patterns may indicate an outlier.  For any epoch, the 
algorithm processes several previous epochs to estimate the 
probability of the current measurement to be an outlier.  If the 
probability exceeds a preset threshold value, the algorithm 
generates an outlier flag.   

To train the algorithm, we used approximately 24,000 epochs 
of data from a sensor that measures the speed of a walking user. 
Fig. 9 shows a sample time series of measurements that contains 
an outlier.  (The details about the design and operations of this 
sensor are outside of scope of this paper.)  Data were collected 
at several user speeds, from standing still to running. Data were 
split into rolling window segments with 𝑁) measurements in 
each segment.  Thus, each segment is a point in a space with 
𝑁) dimensions.  These points were processed using the 
Principal Component Analysis, and we retained 𝑛) ≤ 𝑁) 
principal components in the data.  The 𝑛)-space was split into 
bins, and for each bin we tallied the number of valid and invalid 
(outlier) measurements using the truth measurements. Based on 

this analysis, bins were categorized as “valid” or “outlier”. This 
completes the training portion of the algorithm development.   

Outlier detection becomes a matter of a lookup for a bin.  
Specifically, during subsequent data collects, we apply the 
algorithm to every measurement.  We form a vector of 𝑁) most 
recent measurements (including the current one), and use PCA 
components to find this vector’s projection on the 𝑛) space.  
We determine which bin this vector is in, and look at the 
fraction of invalid measurements in that bin from the training 
portion.  This fraction is the estimated probability of an outlier.  
Indeed, if in the training data all similar segments ended with 
very few outliers, one can expect that the segment in question 
ends with a valid measurement, and vice versa.   

Fig. 10 shows an example of data from a limited number of 
measurements for 𝑛) = 3;𝑁) = 5.  (Here, we selected 3 PCA 
components to be able to plot the data.  The amount of data 
shown is limited to reduce clutter in the figure.)  Each dot 
corresponds to a data segment.  The dot color shows the error 
in the last measurement of the segment as determined from the 
truth data; blue corresponds to low errors, and red corresponds 
to large errors (outliers).  It is clear that red dots cluster in three 
regions, shown by dashed ellipses.  When the algorithm is 
applied to detect outliers, it computes a point in this PCA space 
for each measurement.  As long as this point does not fall into 
one of the “outlier” regions, the measurement is deemed valid 
and vice versa.   

We varied values of 𝑛) and 𝑁) to achieve best performance.  
By trial and error, we arrived at the values 𝑛) = 𝑁) = 5.  
Another knob to turn was the bin size.  Fig. 11 shows results for 
optimal values.  We plot the true probability of an outlier vs. an 
estimate of the same.  For an ideally performing algorithm, 
these two values would be identical, and the plot would be a 
straight line at 45°.  The actual performance reasonably well 
approximates the ideal one.   

Figure 9.  Walking speed measurements containing an outlier.  

 

 
Figure 10.  Outlier clustering in the PCA space 



V. MARRYING THE TWO ALGORITHMS 

Above, we presented two algorithms on detecting outliers in 
navigation sensor measurements.  While these algorithms may 
appear unrelated, it is best to consider them complementary.  
The optimal algorithm may be a combination of the two, which 
exploits the best features of both.  Specifically, the sliding data 
window in the second algorithm forms a multidimensional 
space, and outliers occupy one or more region in that space. 
Separately, outliers are expected to correspond to large 
residuals.  It is logical to design an outlier detection scheme that 
combines these two criteria.  

VI. CONCLUSION 

The basic philosophy of data processing is: “the more data, the 
better result”.  In practice, this is correct only if the data are 
processed with a full knowledge of their statistics.  Moreover, 
some of the data have marginal value and may be skipped 
without a noticeable effect on the result.  Outliers are a good 
illustration of this thesis:  

1. If processed without being identified as outliers, they can 
damage the results 

2. If processed while identified as outliers, their impact on the 
result is small and often can be neglected. 

This establishes a trade-off between processing more data and 
excluding outliers. Since outlier statistics is sensor-dependent, 
it is clear that outlier detection and exclusion should be 
tailored to the data source.  We present two algorithms to learn 
the outlier statistics and features from the data and apply it to 
processing.  One such algorithm estimates GPD parameters for 
the tails of the measurement error distributions; the second one 
applies a very simple machine learning technique for detecting 
outliers from a recent measurement history.   

For the first algorithm, a real data test confirms that overall 
results for the navigation accuracy are improved when 
applying a custom-set outlier threshold.  The theoretic 
criterion for setting the optimal threshold uses estimated GPD 
parameters and the “tail attachment point”.  This step can be 
performed at the sensor calibration stage.  We performed a 
parametric study to detect an optimal threshold for outlier 
processing; this study was made possible due to a “true” data 
set that was available for testing algorithm performance.  
Application of the estimated optimal threshold in a real data 
test shows that navigation accuracy is improved and that the 
estimated optimal threshold is close to the true value.   

The second algorithm successfully detected most outliers in 
the speed data.  The test was performed in real time, on a 
device with a small size, weight and power.   

These algorithms are not limited to navigation and are likely 
applicable to other applications where Kalman or similar 
filters (particle filters, trackers, etc.) are used.   
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