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Abstract - The Predictor-Corrector Unscented Kalman 
filter is designed to compute the measurement update for 
linear or nonlinear measurements.  It is backward-
compatible with other Kalman filter formulations (e.g., 
EKF or UKF) in a sense that the filter state is described 
by the mean and covariance only.  At a small additional 
cost in computational load, this filter delivers a better 
(sometimes, much better) accuracy than alternatives.   
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I. INTRODUCTION 
The list of sensors that are used for navigation 
applications continues to expand.  This brings a new 
challenge to the filtering algorithm: it must process a 
wide variety of measurements, including nonlinear 
and non-Gaussian ones.  For example, a GPS 
pseudorange usually is an almost linear measurement, 
but ranging off a beacon or a peer user is nonlinear, if 
the position uncertainty is on the order of the distance 
to the signal source.  Applying an Extended Kalman 
filter to such measurements would produce an error in 
the state estimate.  There are several known nonlinear 
extensions to the classic Kalman filter algorithm, 
which improve the result to some degree, but still may 
not meet requirements for a particular application.  
Nonlinear variants for the Kalman filter include the 
Extended Kalman Filter [e.g., see 1] (which is nothing 
more than a linearization), the 2nd order filter [2], the 
Iterated Kalman Filter [e.g., see 3], the Unscented 
Kalman Filter [4], Gauss-Hermite Filter [5,6], the 
Cubature Filter  [7], etc.   
A Kalman filter or its extension characterizes both the 
state and a measurement using only the mean and 
covariance, i.e. the first two moments or cumulants of 
the statistical distribution.  It has been long recognized 
that nonlinear measurements warp the joint 
distribution of measurement and state errors, making 
it non-Gaussian even in the case of Gaussian noise 

statistics [4].  This gives rise to higher order 
cumulants, which must be truncated for processing by 
the filter.  This is the reason for errors that a classic 
Extended Kalman filter produces when processing 
nonlinear measurements.  In particular, a nonlinear 
measurement may produce a bias in the state estimate 
[4].  A bias is especially dangerous as it is not removed 
by processing multiple measurements from the same 
source.  For example, repeated processing of ranging 
measurements from an RF beacon over some time 
period. Random measurement errors are averaged out 
by the filter; however the bias due to nonlinearity is 
not removed by the Extended Kalman filter and thus 
corrupts the solution.  This bias increases with the 
increase in the uncertainty in the user solution or for a 
close-by beacon.   
The popular Unscented Kalman Filter algorithm [4] 
and its variations (such as the Gauss-Hermite [5, 6] or 
Cubature algorithm [7]) account for the biases induced 
by measurement or time update nonlinearity.  They 
compute the mean and covariance for the distribution, 
which is “warped” by nonlinearity.  This leads to a 
more accurate solution in the statistical sense.  As a 
result, posteriori errors are not biased, but still can be 
substantial.      
Paper [8] showed that known Kalman extensions fall 
short of processing all types of nonlinear 
measurements.  It also derived an analytical 
formulation, which is universally applicable for 
different types of nonlinearities.  In this paper, we 
extend that idea and present a computer algorithm, 
which delivers robust, efficient and highly accurate 
results for processing nonlinear measurements.     
In our algorithm we make use of the fact that nonlinear 
errors are a function of the user uncertainty, and this 
uncertainty is always smaller for posteriori state than 
for a priori one.  Hence, using the posteriori state for 
computing nonlinear corrections should produce a 
more accurate result.  As a result, we apply a predictor-
corrector scheme.  At the predictor stage, posteriori 
state and covariance are roughly estimated using the 
Unscented Kalman filter (or its variant).  Corrector 
uses this rough estimate to compute and apply 
nonlinear corrections, again using the Unscented 
Kalman filter.  The result is at least as good as for the 
standard UKF application; however if the Kalman gain 
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is relatively high, the predictor-corrector algorithm is 
much more accurate.    
This reasoning is confirmed by computer simulations.  
The user determines its position on a plane by 
processing range measurements from two beacons, 
which are located at known locations above the plane.  
We compare results from the predictor-corrector 
algorithm with those from EKF, Iterated Extended 
Kalman filter, and the Unscented Kalman filter.  The 
nonlinearity corrupts the EKF estimate by producing a 
position-dependent non-zero mean error, as expected.  
Depending on the measurement quality, IEKF may 
produce a much better estimate, but it can still be 
biased.  UKF removes the bias, but the error (even 
though it is zero mean) persists.  The predictor-
corrector algorithm achieves the best of both results: 
the bias is removed and the magnitude of the error is 
reduced, in some cases by a large factor.   
The new algorithm is easy to implement and efficient 
to run.  It retains the main attractiveness of the Kalman 
filter: the user state is described only by the mean and 
covariance.  This is a simple and economical approach 
compared to other parameterizations for the state, such 
as those used by particle filters [e.g., see 9].  Our 
algorithm can be applied in all applications that 
currently use a Kalman filter or one of its extensions.  
It delivers more accurate (in some cases, substantially 
more accurate) results than previously known 
comparable algorithms.   

II. NONLINEAR ERRORS AND APPROACHES FOR 
THEIR MITIGATION 

 
A Kalman filter typically estimates the state from 
indirect measurements.  This means that we do not 
have the luxury of measuring the state vector itself; 
rather, we measure the value of a quantity that is a 
function of the state vector.  A measurement function 
is often nonlinear, and the Extended Kalman filter 
linearizes it at a priori state.   It is this linearization that 
often causes errors in the result.  Below we consider a 
qualitative, intuitive example that shows the nature of 
the nonlinear errors in EKF.  This example will help 
us to understand relative strengths and weaknesses of 
different flavors of nonlinear extensions of the Kalman 
filter and ultimately to design an improved and more 
accurate algorithm.  
 
Consider a filter that estimates a one-dimensional 
(scalar) state x , where we measure the value of some 
nonlinear function ( )xA .  Let us assume that a scalar 
measurement z  has a very low noise variance, so that 
it essentially produces an accurate value of ( )xA .  For 
this example, an EKF performs the following 
procedure: 

1. It linearizes ( )xA  at a priori value x~ .  This 

produces a slope ( )xA ~! .  This is known as 
“computing the partials” in the Kalman filter 
jargon.  

2. It computes the measurement residual 
( )xAz ~−  

3. Finally, EKF updates the a priori estimate as 

follows: 
( )
( )xA
xAz

xx ~
~~ˆ

ʹ
−

+=  

Of course, EKF equations are more general than this 
rudimentary algorithm: they use matrix-vector 
formulation for multidimensional states (and often, for 
multidimensional measurements) and they allow for 
uncertainty in the measurement, which leads to a 
weighted sum of a priori state and the measurement.  
However, our simple example is useful because it 
captures the essential mechanism for producing 
nonlinear errors.   
 
Indeed, Figure 1 shows that the state that is estimated 
via linearized procedure is different from the one, 
which can possibly produce measurement z .  The 
difference between the estimated state and the true 
value is entirely due to the curvature of the 
measurement function ( )xf , which is not accurately 
approximated by its linearization  
 
( ) ( ) ( ) ( )xfxxxfxf ~~~ ʹ⋅−+≈   (1) 

 
From this simple example we can draw two important 
observations.  First, the nonlinear error is a function of 
the difference between a priori and the true state.  
Second, if measurement residuals for two different 
measurements have different signs (i.e., one is positive 
and another is negative), the nonlinear error does not 
necessarily flips its sign.  This latter property causes 
the biggest concern for applying EKF to nonlinear 
measurements.  Indeed, even if the measurement noise 
is zero mean, the nonlinear error is not, and may 
introduce a persistent bias in each measurement 
update.  Such bias will not be averaged out by 
processing more measurements, corrupting the 
solution.   
 
At this point, we consider two different broad 
approaches that were used by various flavors of 
nonlinear Kalman filters for mitigating the nonlinear 
error.   
 



A. Approach 1 
The first approach recognizes that a priori state 
estimate has fundamental uncertainty, and estimates 
the nonlinear error statistically.  Since the Kalman 
filter keeps track of the state covariance, we can 
integrate the expected nonlinear error over the entire 
distribution and compute its mean value.  Then 
posteriori estimate can be corrected for this mean 
nonlinear error.  This method does not guarantee to 
remove the nonlinear error for each individual 
measurement, but it does remove the nonlinear bias in 
the statistical sense.  Hence, there is hope that over 
many measurements the nonlinear errors will not have 

a large detrimental effect on the solution.  This 
approach is taken by such algorithms as the 2nd order 
filter, the Unscented Kalman Filter, the Gauss-
Hermite Filter and the Cubature Filter.  They are 
similar in spirit but differ essentially by the algorithm 
that is used to integrate the nonlinear error over the 
entire a priori distribution.   
 
Another way to look at this approach is to consider the 
augmented state that includes the measurement noise 

in a joint distribution function.  Here we no longer 
assume that the measurement has very small variance.  
A notional example of the joint distribution function is 
shown in Figure 2.  The sickle-shaped distribution is 
decidedly non-Gaussian.  Yet for simplicity and to 
retain the classic Kalman filtering paradigm, this 
approach characterizes the state distribution by the 
mean and covariance only.  In practice, this can be 
viewed as truncating the set of distribution cumulants 
beyond the second order, which would be equivalent 
to approximating the joint distribution by a Gaussian.  
Figure 2 also shows a Gaussian approximation, which 
has the same mean and covariance as the joint 
distribution.  The mean (the gravity center of the 
sickle-shaped region) is shifted compared to a priori 
value; this is exactly the nonlinear bias that is 
predicted by the Unscented Kalman Filter.   

B. Approach 2 
The second approach recognizes that we do know 
more about the posteriori user state than about a priori 
one.  Indeed, the covariance of the user state is always 
shrunk by a measurement update.  In a limit case of 
low variance measurements, we may have a much 
more accurate user state estimate after processing a 
measurement.  From Figure 1 we can infer that it may 
be possible to estimate the nonlinear correction if we 
have a rough estimate of the state from an EKF.  This 
suggests the idea of the Iterated Extended Kalman 
Filter: the first iteration is used to roughly estimate the 
state, and this knowledge is used during a second 
iteration of the filter to correct the nonlinear error at 
the state predicted by the first iteration.   

C. Relative strengths and weaknesses of different 
nonlinear Kalman filter extensions 

 
From the above description it is clear that these two 
broad approaches are complementary.  The first 
approach removes the bias due to uncertainty in a 
priori user state, but it does not benefit from the 
information in posteriori state.  The second approach 
uses posteriori information, but it fails to account for a 
bias that is due to state uncertainty.  Each approach has 
its pluses and minuses. 
 
Removal of nonlinear bias is important for many 
applications, especially when multiple measurements 
of the same type are processed over time.  A bias will 
not be averaged out by processing and will corrupt the 
solution.  However, in practice the residual bias may 
still remain despite our best efforts.  The reason for this 
is that the computed bias correction is based on a priori 
state covariance (as the nonlinear error is integrated 
over state uncertainty).  In a typical application, the 
state covariance computation does not use measured 

Figure 1.  A linearized (EKF) and a nonlinear 
estimate for a one-dimensional state.  

Figure 2.  Mean and covariance for a linearized 
and a nonlinear joint distribution 

 



data; instead, it relies on models for measurement 
variances and for the process noise.  Such models are 
not always accurate; thus, the state covariance may be 
under- or overestimated.  From the above description 
it is evident that this would correspondingly lead to 
under- or overestimation of the nonlinear bias.  
 
Approach 2 is more accurate if the posteriori state 
uncertainty is small, but it fails to capture the overall 
bias effect if the measurement update does not 
drastically shrink the state uncertainty.  As we 
discussed above, the residual bias is the primary 
danger in many applications.   
 
The above analysis suggests a straightforward repair 
to both problems.  The nonlinear correction should be 
computed at posteriori mean (Approach 2) plus the 
bias due to uncertainty in the posteriori state 
(Approach 1, but used for posteriori state).  This idea 
is at the foundation of a new prediction-correction 
filter that is presented in this paper. 

D. Relationship to the IMRE Kalman Filter 
The complementary nature of existing nonlinear 

Kalman filter extensions was first demonstrated in [8].  
That paper also presented an analytical formulation for 
a filter that integrates strengths of existing filters; this 
formulation was called the IMRE Kalman filter.  It is 
instructive to see how the IMRE Kalman filter fits the 
paradigm of Approach 1 and 2 to treating 
nonlinearities.  The final IMRE Kalman expression for 
posteriori estimate is as follows.  The IMRE Kalman 
filter uses the measurement update that applies the 
conventional EKF first, similarly to the first iteration of 
IEKF.  This produces the preliminary state estimate x̂  

and the new covariance matrix P̂ .    Then the updated 
state is corrected for nonlinear effects: 

( )

( )

( )[ ] 22

2

2

ˆˆˆ2ˆˆ
2
1

ˆ1

ˆ
2
1ˆˆ

H
GHPHPGPHPGPTr

xGPzxHA

HPxGxxx

z

z

T

z
I

++−

Δ−Δ+−

⋅ΔΔ−=

σ

σ

σ
  (2) 

The notations are as follows: 

Ix̂ - IMRE Kalman filter estimate for the state, 

x̂ – posteriori EKF estimate for the state, 

P̂ – posteriori EKF estimate for the state covariance 
matrix, 

2
zσ - measurement variance, 

xxx ~ˆ −=Δ - the EKF state update, where  

x~ - a priori state, 

GHA ,, – correspondingly values of the measurement 
function, its gradient and Hessian, computed at a 
priori state x~ .  

Below we analyze this formula in view of qualitative 
approaches to treat nonlinear errors that are discussed 
above.  Let us present the EKF state update as  

xxx t δ+Δ=Δ  

where txΔ  is the (unknown) difference between the 

true and a priori and state, and xδ  is the estimation 
error.  We do not know the value of the estimation 
error, but we do know its statistics: it is described by 
the posteriori covariance matrix.  Let us compute an 
estimate for the following quantity (compare this to 
Equation (2)): 

( )

( ) tt
z

t
T
t

z

xGPzxHA

HPxGx

Δ−Δ+

−⋅ΔΔ−=

ˆ1

ˆ
2
1

2

2

σ

σ
χ

  (3) 

Since txΔ  is unknown, the best we can do is to 
compute the expected value of χ .  By substituting 

xxxt δ−Δ=Δ  and taking the expected value, we 
get: 

( )
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HPxGx
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In the component notation,  
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and  
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By comparing these expressions with the IMRE 
Kalman filter formula (2), we can see that the first four 
terms for the nonlinear correction there can be 
interpreted as the expected value of the nonlinear 
correction, computed at the true state.  The fifth term 

2

ˆ

H
GHP

 does not fit into this scheme and describes 

additional nonlinear effects.   
This is generally consistent with the qualitative 
argument put forth earlier.  Namely, nonlinear effects 
arise due to the fact that the true value of the state is 
different from the estimated value.  If we knew the 
state accurately, we could have estimated the 
nonlinear correction accurately as well.  However, we 
do not know the state accurately (after all, estimating 
the state is the very goal of the filter processing).  For 
each measurement or set of measurements, the best 
knowledge of the state is achieved after these 
measurements have been processed; it is the posteriori 
mean and covariance.  A better way to account for 
nonlinear effects is thus to compute them at the 
posteriori mean and then average over posteriori 
uncertainty.   

III. PREDICTOR-CORRECTOR UNSCENTED 
KALMAN FILTER 

The new algorithm computes first a rough 
approximation to the solution (the predictor step), and 
then makes a fine correction to it (the corrector step).  
In this sense it is similar to the Iterated Extended 
Kalman Filter and IMRE Kalman filter.  It is an 
improvement from the previous algorithms in the 
following respects: 
1. The Iterated Extended Kalman Filter uses the classic 

EKF as the underlying engine; due to this, it does 

not capture the bias in the estimate that is associated 
with state uncertainty.  

2. The IMRE Kalman filter is an analytical formulation 
that requires knowledge of second derivatives of the 
measurement function (the Hessian).  In practice, 
computation of second derivatives may not be easy 
or even accurate.  The Predictor-Corrector algorithm 
uses sigma-points.  This is analogous to the benefits 
of  Unscented Kalman Filter [4] compared to the 2nd 
order filter [2]: the earlier algorithm was complex 
and required second derivatives; it was only after 
introduction of sigma points that nonlinear Kalman 
filter processing received wide acceptance.   

3. The Unscented Kalman Filter does not take 
advantage of posteriori information to perform 
nonlinear processing.  Posteriori state always has 
smaller uncertainty (and is statistically more 
accurate).  Hence, using it helps to reduce the 
nonlinear error.   

Below we provide algorithm details for the Predictor-
Corrector filter.  For simplicity, the formulation is 
limited to the case of scalar measurements.  Also, for 
this implementation, we selected a set of N2  sigma-
points following [4]. 

A. First iteration (predictor) 
The first iteration is a standard UKF filter.  We follow 
[4]; explicit algorithm is provided here for 
completeness only.  Even though we use one particular 
implementation of UKF, any other implementation or 
another similar algorithm (such as the Gauss-Hermite 
algorithm) can be used in its place.  A priori state starts 
from mean 0x  and covariance 0P .  The Predictor 
steps are as follows.  
1. Set sigma points: 

( ) ( )
( ) ( )

N
W

NPxx

NPxx

j

j
j

j

j
j

2
1

00

000

=

!=

+=

  (7) 

where ( )
j

NP0
 is the !j th row of the square root 

of 
0NP .  In practice, one may offset sigma points 

from the mean in the direction of eigenvectors of 0P  
and at the distance of the square root of the product 
of N  and the corresponding eigenvalue of 0P .   

2. Compute expected measurements by using the 
measurement function ( ))(

0
jxA  

( ) !==
j

j
j

jj yWyxAy )(
00

)(
0

)(
0 ;   (8) 



3. Compute innovation covariance: 

( )! +"=
j

z
j

j yyWS 22

0
)(

00 #   (9) 

where 2
z!  is the measurement variance.   

4. Compute cross covariance matrix 

( )( )! ""=
i

Tji
j

xy yyxxWP 0
)(

00
)(

00   (10) 

5. Finally, perform the Kalman filter update for 
measurement z : 
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where subscript 1 refers to the results of the Predictor 
step.   

B. Second iteration (corrector): 
The second iteration also uses UKF as the underlying 
engine, but the original measurement is corrected to 
form the “effective measurement”.  It uses two sets of 
sigma points: one based on the result of the first 
iteration and another set (referred to as hybrid below) 
which combined the mean from the first iteration 1x  

and the a priori covariance matrix 0P .  The steps are 
as follows. 
1. Form sigma-points for the result of the first 

iteration: 
( ) ( )
( ) ( )

j
j

j
j

NPxx

NPxx

111

111

!=

+=
  (12) 

2. Form a hybrid set of sigma-points which uses the 
mean from the first iteration and the covariance 
from a priori state: 

( ) ( )
( ) ( )
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j
j

H

NPxx
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!=

+=
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3. Compute expected measurements for both sets of 
points: 
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4. Compute the effective measurement value: 
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5. Compute the innovation covariance for the hybrid 
set of sigma points: 

( )! +"=
j

zH
j

HjH yyWS 22)( #   (16) 

6. Compute cross covariance matrix for the hybrid set: 
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7. Finally, perform the Kalman filter update: 
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where subscript 2 refers to the results of the 
Corrector step.   

Note two features of the Corrector step.  First, the 
Kalman filter update (Step 7) uses the expected 
measurement 1y  from the first iteration.  This value is 
different from a priori state in two respects: the state 
itself is changed by x!  and the covariance matrix is 

tighter.  Therefore, using 1y  accomplishes the main 
goal of the new algorithm: it makes advantage of the 
better knowledge of posteriori state (both in the sense 
of new state value and tighter covariance).  Second, 
the Corrector step is still applied to a priori state 0x  

and its covariance 0P .  Simply using a priori state 0x  

and posteriori expected measurement 1y  would be 
inconsistent; this is fixed by computing the “effective” 
measurement 1z , which differs from the original 
measurement by the amount needed to remove such 
inconsistency.   

IV. SIMULATION RESULTS 
We assess performance of the predictor-corrector filter 
vs. that of other nonlinear Kalman filter extensions by 
a computer simulation.  Here filters are applied to a 
navigation application, where a user is located on a 



plane and determines its position by measuring ranges 
to two beacons at known locations.    
Measurement equations for this application are well 
known: they are similar to those in GPS positioning.  
However, the distance to a GPS satellite is typically 
much larger than the uncertainty of the user position.  
Hence, the direction to a satellite is approximately 
uniform across the uncertainty in the user position.  
This makes GPS pseudorange equations 
approximately linear for vast majority of applications.  
In our simulations, beacons are deliberately placed at 
a distance, which is on the order of user position 
uncertainty.  This setup is the source of nonlinearity in 
the measurements and of associated errors in the 
solution.   
In each simulation, we fix the estimated user position 
and the location of the beacons, and cycle through the 
“true” user position on the plane.  For each “true” user 
location, we run the filters under test and determine 

posteriori position error.  The beacons are located in 
orthogonal directions ( x  and y ) at the altitude of 400 
m above the user plane and at the horizontal distance 
of 400 m from the estimated user position.  This setup 
is notionally illustrated in Figure 3.  A priori standard 
deviation of the user position is 100! 100 m.  The 
measurement variance value used as an input by each 
filter is 0.1 m2.  However, range values processed by 
the filter did not have any noise added to the true 
range.  This was done to focus the results of the 
simulation on the errors due to nonlinearity and not to 
obfuscate them by noise effects.  Below, we present 
results for two simulations: (1) when the user 
processes ranges from both beacons and (2) when only 
the range in the x  direction is processed. 

A. Simulation 1 
Figure 4 shows the magnitude of the user position 
error after processing both range measurements for 
each user location using the standard EKF.  (The 

position error is a 2D vector, so it is difficult to display 
except as a magnitude.)  Note that the error is zero if 
the true user location happens to coincide with the a 
priori location, and grows if a priori location is 
inaccurate.   
Figure 5 shows the magnitude of the user position 
error for UKF.  The error is generally lower than that 
for EKF, except in the center, where a priori location 
is close to the true location.  A look at the numbers 
shows that the 2D vector error in the central part of the 
plot has the direction, which is generally opposite to 
that for the error in the periphery.  Unfortunately, the 
error magnitude in the figure does not show this flip in 
the direction, but it is precisely the effect of UKF 
processing that subtracts the overall bias from the 
solution.  This leads to better results on the periphery 
(large a priori errors), but overcompensates the bias in 

the center (small a priori errors).   

 
Figure 3.  Simulation setup.  A user processes 

range measurement from two beacons 

Figure 4.  Magnitude of the user position error for 
EKF filter 

 
Figure 5.  Magnitude of the user position error for 

UKF filter 



Figures 6 and 7 show results for the same simulation, 
but for the Iterated Extended Kalman Filter (IEKF) 
and the Predictor-Corrector Unscented Kalman filter 
(PC-UKF).  Both results are uniformly better than 
those for EKF or UKF, and over the large portion of 
the distribution they are much better.  Note that IEKF 
and PC-UKF accuracies are comparable in this 
simulation.  This is due to the fact that we assume quite 
accurate ranging (0.31 m error standard deviation) in 
our simulation, and hence posteriori user position 
uncertainty is much smaller than a priori one.  As we 
discussed above, IEKF and PC-UKF are able to take 
advantage of this fact to correct nonlinear errors in the 
solution.   

Table 1 presents results for the position error, which is 
integrated over a priori user distribution for all four 
filters.  UKF lowers the integrated magnitude of the 
error only moderately (13.1 m for UKF vs. 15.9 m for 
EKF).  However, the main benefit of UKF is in 
decreasing the bias; this can be seen if we look at the 
average error for individual components x  and y  and 
if we retain the error sign in the calculation (i.e., 
compute the average of the actual error component, 

not of its magnitude).  Specifically, the average error 
in the x  component is -14.5 m for EKF and 4.2 m for 
UKF.  On Figure 5 one can see that the error is nulled 

on an ellipse in x , y  plane; the overall bias in the 2D 
vector error is overcompensated within this ellipse and 
undercompensated outside of it.  Table 1 shows that 
IEKF and PC-UKF outperform both the EKF and UKF 
in this simulation; this is also evident from looking at 
Figures 4 through 7.   
While these results are encouraging, they raise a 
question: why do we need the PC-UKF algorithm if 
IEKF delivers a comparable performance?  The 
answer to this question is that IEKF performs well 
only when posteriori state uncertainty is small (as it is 
the case in this simulation); otherwise, IEKF solution 
suffers from a nonlinear bias.  This is illustrated by 
results from Simulation 2, presented below. 

B. Simulation 2 
In this simulation we use the same setup, but process 
only the range measurement from the beacon in the x  
direction.  This leaves a substantial position 
uncertainty, and a priori error in the y  direction is not 
corrected by the filter.  Similarly to Simulation 1, we 
compare results from four different filters: EKF, UKF, 
IEKF, and PC-UKF.  To separate the effect of the 
nonlinear error from the residual a priori error in the 
y  direction, we present results only for the x  error 

component.  This error is a scalar, and now we have 
the opportunity to display the actual error on the plots, 
and not its magnitude.  

 
Figure 6.  Magnitude of the user position error for 

IEKF filter 

 
Figure 7.  Magnitude of the user position error for 

PC-UKF filter 

Filter Mean of 
abs error 

Mean of 
the x error  

Mean of 
the y error 

EKF 15.9 -14.5 -5.06 
UKF 13.1 4.23 1.51 
IEKF 0.85 -0.49 -0.67 
PC-
UKF 

1.21 -0.45 -0.91 

 

Table 1. Estimation errors averaged over a priori 
distribution for Simulation 1 



Figures 8 through 11 show posteriori x  error 
component for EKF, UKF, IEKF and PC-UKF.  
Again, we can see that EKF error is the largest and is 

always negative, which creates a bias in the solution.  
Compared to EKF, the UKF error appears shifted 
upwards, which largely compensates for the bias.  
IEKF error is also biased, which is an important 
drawback for this filter.  Finally, PC-UKF error is 
similar in shape to the IEKF error, but is shifted in such 

way that the bias is largely compensated.  Table 2 
shows the x  error component which is integrated over 
the entire distribution.  These values show the benefit 
of the PC-UKF filter.   
As we discussed before, the bias in the EKF or IEKF 
solution is dependent on the state uncertainty.  
However, the bias in the EKF solution is a function of 
a priori state uncertainty, whereas the bias in IEKF 
solution is a function of posteriori state uncertainty.  
Simulations 1 and 2 have very different posteriori state 
uncertainties.  In Simulation 1, we processed two 
measurements, and posteriori state uncertainty is small 
compared to a priori one.  In Simulation 2, the 
posteriori RMS user position uncertainty is decreased 
approximately by the factor of 2 from a priori 
uncertainty.  Comparison of Tables 1 and 2 shows an 
agreement with our qualitative argument: IEKF bias in 
Simulation 1 is very small, and in Simulation 2 it is 
roughly 2  times smaller than the EKF bias.   

 
Figure 8.  X component of the user position error 

for EKF filter 

 
Figure 9.  X component of the user position error 

for UKF filter 
 

 
Figure 10.  X component of the user position 

error for IEKF filter 

 
Figure 11.  X component of the user position 

error for PC-UKF filter 
 

Filter Mean of the x error component 

EKF       -14.5 
UKF         4.23 
IEKF       -9.9 

PC-UKF         3.09 
 

Table 2. Estimation errors averaged over a priori 
distribution for Simulation 2 

 



V. SUMMARY AND FUTURE WORK 
In this paper we described a new nonlinear Kalman 
filter extension, Predictor-Corrector Unscented 
Kalman Filter.  Following [8], we presented analysis 
that previously existing nonlinear Kalman filter 
extensions (the 2nd order filter, IEKF, UKF, the Gauss-
Hermite filter, and the Cubature filter) are 
complementary.  Namely, IEKF makes advantage of 
better posteriori knowledge about user state to reduce 
nonlinear errors, but does not account for the bias that 
is associated with posteriori state uncertainty.  
Conversely, other filters in the list do account for the 
bias due to state uncertainty, but they do it at a priori 
state, when the uncertainty (and the nonlinear error) is 
larger.  This analysis opened an opportunity to develop 
a filter that combines the best of both approaches.  At 
the predictor stage, this filter estimates the state 
roughly.  At the corrector stage, this estimate is used 
to correct for the nonlinear error associated with both 
the new state and new, smaller uncertainty.   
We also presented results of a simulation that 
compares PC-UKF to EKF, IEKF and UKF.  In our 
implementation, we used UKF as underlying filters for 
both predictor and corrector stages.  It is 
straightforward to use any other nonlinear filter from 
the same family (i.e., the 2nd order, the Gauss-Hermite, 
or the Cubature filter) as underlying filters.  We expect 
the results to be qualitatively similar to our UKF-based 
analysis: the predictor-corrector filter works at least as 
well as the underlying filtering algorithm, and works 
much better if the Kalman gain is large.   
PC-UKF algorithm does not deviate from the main 
premise of a Kalman filter, which is using only the 
mean and covariance to describe the state statistics.  
While a more accurate model for state distribution 
may potentially lead to a more accurate estimate, it 
would also be more complex and computationally 
intensive.  An example of such approach is the particle 
filter [9], which may potentially offer better accuracy, 
but suffers from the so-called curse of dimensionality 
for applications with large numbers of state 
dimensions.  In contrast, the computational 
requirement for PC-UKF is roughly only twice of that 
for UKF.  Also, since PC-UKF uses only the mean and 
covariance, it can be used wherever the EKF or any of 
its nonlinear extension (such as UKF) are being used.   
As presented in this paper, PC-UKF applies to 
processing linear and nonlinear measurements by a 
filter.  In practice, a filter may alternate the 
measurement update and the time update steps.  A time 
update propagates the state and its covariance between 
measurements.  Such propagation is often nonlinear, 
which is also a source of errors for the classic EKF.  
UKF and related filters elegantly treat the time and the 
measurement update steps in a similar way; they 
recognize that the culprit for nonlinear errors in both 

cases is the distortion of probability distribution due to 
nonlinear mapping.   
This opens an intriguing possibility of extending the 
PC-UKF idea to the time update step as well.  
Currently, PC-UKF may use a standard UKF filter for 
time update (not shown in the algorithm description or 
in simulations above).  Therefore, the accuracy of the 
time update is limited by the accuracy of UKF at this 
step.  (Alternatively, the predictor-corrector filter may 
also use the Gauss-Hermite or a similar filter.)  The 
paradigm for UKF at the time update is the same as for 
the measurement update: a distribution, warped by 
nonlinear transformation, is characterized by a mean 
and covariance.  Similar to the measurement update, 
the nonlinear error is a function of the state covariance.  
Hence, nonlinear errors at the time update step can be 
reduced compared to UKF if we manage to use 
posteriori state instead of a priori one.  This also 
suggests a predictor-corrector scheme, but in this case 
one would have to perform a nonlinear (e.g., UKF) 
time update, then process the measurement or 
measurements that come immediately afterwards and 
that reduce the state uncertainty, and then use that 
information to perform the same time update again in 
a corrector step.  By analogy with PC-UKF, this 
processing sequence, while more complex than the 
standard one, may produce better accuracy for 
nonlinear time updates.  It will be a topic of future 
research. 
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