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ABSTRACT 

Geospatial intelligence analysts rely on automated object detection methods to make efficient and 

informed decisions in dynamic environments. Deep learning methods achieve state-of-the-art 

accuracy and speed for object detection but require large amounts of manually labeled data for 

training. Active learning approaches aim to reduce this manual effort by nominating the most 

informative subset of the data for human labeling. Active learning on streaming data occurs when 

a deployed inference model makes on-the-fly decisions of whether to nominate a sample to be 

labeled by analysts. These labeling determinations are typically made using uncertainty-based 

metrics, which prioritize labeling samples where the model’s predictive confidence is below a set 

threshold. However, uncertainty-based methods tend to select highly similar samples with 

redundant information, which may not improve model performance. Alternatively, diversity-based 

methods prioritize samples with non-redundant information, but these methods have generally 

been limited to settings with 2-dimensional non-streaming data. In this work, we develop diversity-

based active learning methods for object detection on streaming LiDAR point clouds. We compare 

the accuracy and labeling efficiency of our methods to standard uncertainty-based methods and 

find that our novel methods achieve superior accuracy with fewer labeled samples. Our findings 

can be applied to diverse fields of computer vision, including remote sensing, to improve the 

efficiency of their data processing pipelines. 

1 INTRODUCTION  

Geospatial intelligence analysts rely on continuous information from airborne sensors to make 

decisions that impact national security. Specifically, these analysts observe the dynamic 

distributions and locations of target objects in an environment to evaluate potential threats.  

Machine learning can help analysts quickly survey new data by automatically detecting these 

targets. These Automatic Target Recognition (ATR) algorithms need to be fast and accurate to 

provide useful real-time decision support. These criteria are met by deep learning methods, which 

achieve state-of-the-art speed and accuracy for object recognition tasks across a variety of imaging 

domains [1-3]. However, deep learning is very resource-intensive, requiring large amounts of 

labeled ground-truth data to train models. Although large, labeled datasets exist for research 

purposes as standardized benchmarks, models trained on these datasets do not generalize to real-

world tasks, which have different imaging parameters, ontologies, and environments. Therefore, 

analysts must train models with their own manually annotated data to achieve maximum accuracy.  
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The process of labeling data is tedious, time consuming, and prone to human error and bias. These 

drawbacks are especially true for object detection tasks, where annotating data is more laborious 

than for image classification tasks [4]; ground truth labels for object detection tasks require 

localized annotations for each object in a scene whereas classification tasks require just one non-

localized label per scene. Labeling objects in 3D scenes adds further complexity and labor. 

Additionally, in real-world scenarios, the labeling effort would be ongoing: continuous data 

collection in dynamic conditions requires models to be updated routinely to maintain accuracy 

over time. Therefore, analysts need methods to distinguish which incoming data should be 

manually labeled for training. Our work aims to mitigate these labeling challenges by reducing the 

number of ground truth labels required to train and update 3D object detection models.  

Active learning is a popular technique to reduce the amount of ground truth data necessary for 

training by iteratively selecting a small subset of unlabeled data that would maximally improve 

the model’s performance [5]. Each iteration contains three steps: 1) the machine learning model 

produces a score for each unlabeled sample that represents the sample’s potential to improve the 

model, 2) subset of samples is selected based on these scores and sent to a human analyst to label, 

3) the labeled samples are added to the training dataset and the model is updated. These scores can 

be based on either model uncertainty, sample diversity, or a hybrid of the two. Uncertainty-based 

methods choose samples in which the model exhibits low confidence in its predictions [6]. As a 

result, the selected samples are close to the model’s decision boundary but are usually similar to 

each other. Similar samples would likely contain redundant features, making it inefficient for 

reducing labeling efforts [7-9]. Conversely, diversity-based methods choose samples that reflect 

the dataset’s heterogeneity by selecting varied samples [10,11]. However, the model may already 

confidently and accurately process them, so including them in training may not contribute to 

maximal performance gains. Hybrid methods moderate these drawbacks by choosing a diverse 

subset of the most uncertain samples [12].  

The majority of existing research on active learning was conducted on 2D data [13,14]; however, 

some initial studies on 3D data have shown that active learning can reduce the amount of training 

data by 50-60% on object detection tasks [12,15,16]. Most of this research, however, assumed all 

unlabeled data was simultaneously available, failing to account for more realistic scenarios with 

ongoing data collection and a continuous incoming data stream. Methods that can accommodate 

data streams are especially important for DoD use-cases, where data acquisition and analysis are 

often done in tandem. Active learning on streaming data would require a deployed inference model 

to decide on-the-fly whether a newly collected data sample would be useful to bolster model 

performance (Figure 1). In the streaming setting, these labeling determinations are typically made 

using uncertainty-based metrics because diversity metrics generally begin with a clustering 

algorithm to divide the unlabeled data into disparate groups, which requires many unlabeled data 

samples to be simultaneously available [17,18]. Streaming active learning methods would benefit 

from novel diversity metrics that can be computed on individual samples.  
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Figure 1: Streaming Active Learning Pipeline. 

In this work, we develop a novel active learning metric, Normalized Object Distribution Entropy 

(NODE), that can be implemented on data streams.  In contrast to most existing diversity metrics, 

which use inter-sample diversity, NODE uses intra-sample diversity to accommodate streaming 

data. Compared to leading uncertainty-based metrics, NODE reduces annotation costs while 

maintaining performance. NODE also prioritizes samples with more rare objects in imbalanced 

data sets. Our work is some of the first to implement diversity-based active learning in a streaming 

setting for 3D object detection. Our findings can be applied to many fields that need automated 

2D and 3D object detection methods such as geospatial intelligence, robotics, and autonomous 

driving.  

2 RELATED WORK 

2.1 Pool-Based Active Learning 

Pool-based active learning is a technique that applies when a user has a large, unlabeled dataset 

readily available (i.e., a previously collected dataset). Therefore, samples can be compared against 

each other to select the most informative subset during each iteration of active learning. This is 

contrary to stream-based active learning, which makes labeling decisions individually and on-the-

fly. When using uncertainty metrics, pool-based active learning methods can calculate the 

uncertainty score of all unlabeled samples, rank these scores, and choose to label the most 

uncertain subset. When using diversity metrics, pool-based methods can apply a clustering 

algorithm to sort all unlabeled samples into disparate groups to ensure selected samples represent 

the dataset’s heterogeneity.  
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Uncertainty metrics for active learning aim to select the samples where the model is least certain 

about its prediction.  This certainty is typically estimated using the values of the final softmax 

layer of the model. In the case of object detection, this softmax layer represents the predicted 

probability that a detected object belongs to each class. The most straightforward approach to 

measuring uncertainty would be to take the highest value from the softmax layer, which designates 

the most probable class, and treat this value as the model’s predictive certainty [19,20]. During 

each active learning iteration, the samples with the lowest certainty would be selected for labeling.   

To leverage more available information, other uncertainty methods utilize the predicted probability 

values for the other classes, not just the most probable one. A common uncertainty metric, margin 

uncertainty, calculates uncertainty as the difference between the highest and second highest 

predicted probabilities in the softmax layer [21, 22]. Large differences between the highest and 

second highest probability reflect higher model certainty. Smaller differences indicate that the 

model has trouble distinguishing the two classes. Another common uncertainty metric is to 

compute the Shannon Entropy of the softmax layer [19, 21-24]. Shannon Entropy is highest when 

computed on a uniform probability distribution and lower on non-uniform distributions. Therefore, 

if the maximum softmax value is high, the model is confident in its prediction, and the Shannon 

Entropy will be low. Prior work on pool-based active learning for LiDAR point clouds showed 

that selecting samples Shannon Entropy resulted in the most accurate model [25].  

Diversity-based methods project each sample into latent space so that distances between samples 

can be efficiently measured [12]. These methods aim to select samples with diverse features. One 

common diversity method utilizes K-medoids clustering, which iteratively groups the samples into 

distinctive clusters [26, 27]. The samples located closest to the center of each cluster are then 

selected for labeling. An alternative diversity approach is called Core-Set [28]. This method 

chooses the samples that minimizes the distance between unselected samples and their closest 

selected sample. While these methods only consider the unlabeled samples during the selection 

process, an approach called Furthest Nearest Neighbors also leverages the labeled samples [29]. 

This approach chooses the unlabeled samples that are the furthest distance from the labeled 

samples in latent space. 

2.2 Stream-Based Active Learning 

As previously stated, stream-based active learning occurs when data collection and analysis must 

be done in parallel and labeling decisions need to be made on-the-fly. In other words, unlabeled 

samples cannot be compared to each other when making labeling decisions; samples that are not 

selected for labeling are discarded. This is necessary for instances with data storage and time 

constraints [17]. Additionally, continuously filtering samples during ongoing data collection helps 

maintain the accuracy of deployed models in the presence of concept drift [18, 30, 31]. Concept 

drift occurs when the data distribution changes over time, which diminishes the performance of 

models trained on older data. 
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Stream-based active learning is a newer area of research compared to pool-based active learning. 

Consequently, there is less previous work for this branch of active learning, especially for object 

detection tasks. The work that has been done has focused largely on adapting existing uncertainty 

methods for a streaming scenario [17]. In general, the uncertainty metrics used in the streaming 

case are the same as those used in pool-based active learning (e.g. Shannon Entropy, margin, etc.). 

However, instead of ranking the metrics across all unlabeled samples and choosing the most 

uncertain, stream-based methods set an uncertainty threshold [18, 32]. Any sample whose 

uncertainty score exceeds the threshold is selected for labeling.  This threshold can be a fixed value 

or adjustable based on model performance.   

There is little existing research on diversity metrics for stream-based active learning.  However, 

recent work developed a diversity metric for stream-based active learning on 3D object 

segmentation [22]. This metric, called Voxel Confusion Degree, divides a single sample into 

smaller samples and then selects the sub-sample with the highest predicted class diversity. 

Additionally, a diversity metric for stream-based active learning was recently developed for 2D 

image classification tasks [33]. This method projects all labeled data into latent space and 

computes the mean and standard deviation of the distance between the samples in the labeled 

dataset. This mean and standard deviation are used to compute the Z-score for each unlabeled 

sample. If the Z-score surpasses a set threshold, the sample is selected for labeling. To our 

knowledge, our work is the first to study active learning for object detection in 3D streaming data.   

3 EXPERIMENT 

3.1 Dataset 

We used the same dataset in this work as was used in our prior work on pool-based active learning 

methods [12, 25]. This dataset consisted of 41 LiDAR point clouds with 7863 target objects. These 

objects are distributed across seven classes, with class 1 comprising ~50% of the data. We 

randomly divided the point clouds into training, validation, and test sets, which maintain the 

approximate class distribution of the entire dataset (Figure 2, Table 1). We preprocessed the data 

by dividing the point clouds into 30m x 30m overlapping tiles. Finally, we randomly selected 1000 

tiles from the training set to serve as our initial labeled training data and randomly ordered the 

remaining 6589 training tiles to simulate an unlabeled data stream.  
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Figure 2: Class distribution for training, validation, and test sets 

Table 1: Dataset Class Distribution 

 Split Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Total 

Train 2261 993 796 87 570 242 53 5002 

Validation 776 323 159 22 87 44 15 1426 

Test 837 218 226 16 49 73 16 1435 

Total 3874 1534 1181 125 706 359 84 7863 

3.2 Model Architecture 

We used a modified VoxelNet architecture as our object detector because of its robust prior 

performance on point clouds [34]. Our modifications to VoxelNet are described in detail in our 

previous work [12] but can be summarized by three main changes: 1) we removed a concatenation 

layer from the feature extractor portion of the model to reduce computational load, 2) we used 

Focal Loss and weighted sampling to adapt VoxelNet to imbalanced data sets, and 3) we used 

stochastic weight averaging and weight regularization to reduce overfitting. Prior to training, we 

augmented and divided each tile into 0.75m x 0.75m x 1m voxels. Augmentations included rotating 

or cropping point clouds and randomly dropping voxels. We used the Adam optimizer during 

training and trained the model from scratch for 150 epochs during each active learning iteration. 

During post-processing, we used non-maximum suppression with an Intersection-over-Union 

(IoU) threshold of 0.3 to remove duplicate detections.  
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3.3 Active Learning Pipeline 

We first trained an initial model on 1000 labeled training tiles. We then simulated a streaming 

active learning paradigm. We presented unlabeled tiles to the initial model one at a time and 

calculated an active learning score for each tile. If the score exceeded a predetermined threshold, 

we added that tile to a cache to be labeled. If the score did not exceed the threshold, the tile was 

discarded. When 275 tiles had been added to the cache, we added these tiles to the training data 

and retrained the model from scratch. We repeated this process four more times for a total of five 

active learning iterations.  

We used the same set of labeled tiles as our starting training data for every trial. During training, 

we randomly disregarded 50% of the background-only tiles (e.g. tiles without any objects) to 

reduce the likelihood of false negative detections. The active learning score thresholds were 

hyperparameters that we tuned to optimize performance on the validation set. For analysis, we ran 

eight trials of each active learning metric. 

3.4 Active Learning Metrics 

We developed a novel diversity-based active learning metric, Normalized Object Distribution 

Entropy (NODE), and compared its performance to a common uncertainty-based method, entropy, 

as well as a control of random selection. 

Random: For our random control, we allotted a labeling budget of 25% to match the approximate 

proportion of selected tiles from the entropy and NODE methods. For each unlabeled tile in the 

data stream, we generated a random number between 0 and 1. If a tile's random number was less 

than 0.25, we added the tile to the cache. This method equates to selecting unlabeled tiles with a 

25% probability.  

Uncertainty - Entropy: Our uncertainty-based method, Entropy, is defined using the Shannon 

Entropy equation: 

𝐻(𝑥)  =   − ∑ 𝑝(𝑥) log(𝑝(𝑥)) 
   (1) 

In this case, p(x) is the softmax vector for a single detected object in a tile. This vector has 

dimension 1 x (N+1), where N is the number of classes in a dataset, and the extra value is to 

accommodate background detections. Entropy scores are highest when computed on a uniform 

distribution, but their peak value varies with N. To generalize our method to different N values, 

we normalize object entropy scores by the entropy of the uniform distribution of length N. To 

calculate a tile-wide entropy score, we averaged the entropy scores for each detected object in the 

tile. We selected tiles that had an entropy score above 0.25 for labeling. This threshold was selected 

because it maximized performance on the validation set.   

NODE: Our novel diversity-based method, NODE, also uses the Shannon Entropy equation (1). 

However, instead of using the softmax vector for p(x), we use the distribution of detected objects 
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in each tile. In this case, p(x) has dimension 1 x N, and each value of the vector represents the 

proportion of objects belonging to a particular class. This method priorities tiles that have diverse 

objects over tiles with multiple objects of the same class. We first normalize the entropy value by 

the N-dimensional uniform distribution entropy value. Then, we normalize this value by the 

number of detected objects in a tile to encourage the model to select tiles with diverse, but few, 

objects to reduce the manual labeling effort. We selected tiles that had a NODE score above 0.025 

for labeling. This threshold was selected because it maximized performance on the validation set. 

3.5 Evaluation Metrics 

The most widely used and accepted object detection metric is Average Precision (AP).  AP is a 

recall-weighted average of precision.  The definition of precision is: 

Precision =   

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (2) 

Recall, also known as probability of detection, is defined as: 

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (3) 

Based on (2) and (3), AP is defined as: 

AP = ∫ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟𝑒𝑐𝑎𝑙𝑙)𝑑(𝑟𝑒𝑐𝑎𝑙𝑙)
1

0
 (4) 

AP is a great metric for single-class detection scenarios, but with multiple classes, there are two 

approaches to summarize performance, class-agnostic and class-specific.  Class-agnostic AP, often 

referred to as mean Average Precision (mAP), is defined as: 

mAP = 
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑖=1     (5) 

Where N is the number of classes, and each class is equally weighted.  Conversely, class-specific 

AP (csAP) is a weighted average of AP where the weights are the number of objects in each class.  

If we define ℎ𝑖 as the number of annotations in class i, then class-specific AP is defined as: 

csAP = 
1

𝑁
∑ ℎ𝑖
𝑁
𝑖=1 𝐴𝑃𝑖     (6) 

 

We evaluate our object detector by AP with Intersection over Union (IoU) threshold of 0.5, known 

in the literature as AP50.  The mAP and csAP metrics are used to evaluate the Active Learning 

methods in this work. 



   

 

 

 

 
Distribution Statement A. Approved for Public Release; Distribution Unlimited: AFRL-2025-1616 

9 

4 RESULTS 

The results of our experiment described above are shown plotted with class-specific and class 

agnostic metrics versus number annotated tiles (left) and number of objects (right) in Figure 3.  

Error bars are standard error measurements.  The first observation to note is the random selection 

of tiles for each active learning training run produces poor results compared to NODE and 

Uncertainty.  Comparison of our method to Uncertainty is a little more nuanced. 

 

Figure 3: Average Precision metrics plotted versus annotated tiles (left) and number of annotations (right). 

NODE is just as efficient in creating an optimal model as Uncertainty when considering the 

number of tiles (i.e., samples) that must be annotated.  However, the NODE method finds tiles 

with fewer and more class-diverse objects, making the number of objects found more impactful 
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for the model.  Analysts would have to annotate the same number of tiles, but they would be able 

to annotate faster since there are fewer objects.  The overall performance of the models reaches 

the same level within experimental uncertainties.   

To illustrate this effect, Figure 4 shows the number of objects of each class in the Active Learning 

Iterations.  The Uncertainty method selects more of the most common classes (classes 1 & 5) and 

selects fewer of the rarer classes.  Specifically, NODE selected more of classes 4, 6, and 7, which 

improves detection performance as shown in Figure 5. 

 

Figure 4: Number of objects in the Active Learning Iterations by each class.  Classes with the most objects are in the top row, 

classes that have fewer objects are in the bottom row. 

The NODE method results in higher accuracy on the rarest classes, 4 and 7, while still matching 

the performance of the Uncertainty method for the more common classes 1, 2, 3, 5, and 6. 
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Figure 5: AP50 results per class after 5 iterations of Active Learning. 

5 CONCLUSION 

As machine learning becomes more prevalent in DoD analysis pipelines, active learning offers a 

promising solution to maximize labeling efficiency, which in turn helps deploy working models 

as quickly as possible. Most active learning research to date has targeted situations where large 

unlabeled datasets are already available. These methods are not optimal for more realistic DoD 

scenarios where data is collected and analyzed in parallel. Streaming active learning methods exist 

but have focused largely on the development of uncertainty-based methods. In this work, we 

develop one of the first diversity-based active learning metrics for streaming data. Our metric, 

NODE, can reduce the manual labeling effort required during active learning, particularly during 

early iterations, and improve performance on rarer classes in imbalanced data sets.  

Future work should focus on combining NODE with existing uncertainty methods to develop 

hybrid methods for streaming scenarios. For example, a new hybrid metric could be created using 

a weighted sum of NODE and an uncertainty metric such as entropy. Alternatively, given the 

success of NODE in early iterations, future work could implement NODE in the first few iterations 

of active learning and then switch to an uncertainty-based method once the model is more mature. 

Overall, our work can help analysts efficiently label data, especially in cases where the target of 

interest is rare.  
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