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Abstract—Identifying Internet of Things (IoT) devices by
their Radio Frequency (RF) fingerprint has important security
implications. As the number of connected devices grows, current
authentication mechanisms are becoming more susceptible to
device spoofing attacks. To combat this, we exploit hardware
imperfections in the RF transmit chain to extract device-specific
features that uniquely identify an emitter, providing an additional
layer of security. This is accomplished with a complex-valued
Variational Autoencoder that has a Gaussian Mixture (GMVAE)
prior on the latent variables’ marginal distribution. By exploiting
sequential information in the RF time-series data, we achieve pro-
cessing gain by integrating multiple latent-space representations
from a single device. We test and analyze the proposed approach
on real WiFi data and obtain excellent classification results. We
also test the proposed model on an Out-of-Distribution (OOD)
detection task.

Index Terms—Internet of Things, RF fingerprinting, Varia-
tional Inference, Deep Learning

I. INTRODUCTION

The Internet of Things (IoT) is increasingly changing our
lives. Connected devices are being incorporated into facets of
both our work and home lives. However, millions of in-use
IoT devices lack fundamental security measures and are open
to attack. This leaves networks interacting with IoT devices
vulnerable as well.

The ability to identify IoT devices based on their unique
hardware-specific artifacts can mitigate many attacks that are
commonly applied to insecure devices. For instance, hardware-
specific authentication would prevent an identity spoofing
man-in-the-middle attack. It can also be used to filter traf-
fic from devices perpetrating a distributed denial of service
(DDos) attack with compromised IoT devices. An attack of
this sort successfully left much of the U.S east coast without
internet access in 2016. The strength of such an authentication
mechanism is that it assumes no software or hardware depen-
dencies and hence can improve network security without any
modifications to existing devices.

In an RF transmit chain, the digital in-phase (I) and
quadrature (Q) signal components go through independent
digital-to-analog converters (DACs), quadrature modulated,
and amplified before being sent through the antenna. Each of
these blocks imparts a signature on the transmitted signal that
is specific to the device. For example, the DAC’s input-output
characteristics impose a nonlinear relationship known as the
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Integral Nonlinearity (INL), which measures the deviation
between the ideal output value and the measured output value
for a given input. Furthermore, the poles of the DAC recon-
struction filters can deviate slightly from their nominal location
due to component manufacturing tolerances. This deviation
also introduces a device specific imperfection. Additionally,
power amplifiers exhibit nonlinear behavior as input levels
increase and may introduce in-band noise or interference
in adjacent frequency channels. Lastly, the oscillators can
introduce a phase imbalance in the data since there will always
be a small phase offset between them causing the resulting I
and Q channels to deviate slightly from perfect quadrature.
All of these could be exploited for the purposes of device
identification.

In this work, we model the device specific features as hidden
random variables and propose an approach which exploits
the expressive power of structured latent variable models in
order to enforce a semantically meaningful latent space. The
model is trained to learn location independent features in
a supervised fashion from raw RF complex-valued data. In
contrast to existing approaches which extract hand-crafted
features, our approach is completely learned from data and
therefore is agnostic to waveform and protocol specifics. We
present results on datasets of 100 and 500 WiFi devices
collected under normal use conditions. We show additional
results on 19 WiFi devices that communicated bitwise identical
data packets.

The next sections are organized as follows. In Section II we
briefly review relevant work in RF fingerprinting. In Section III
we describe the proposed model and justify its use based on
knowledge of a traditional RF transmit chain. Experimental
results are presented in Section IV, and we conclude in
Section V along with providing future research directions.

II. RELATED WORK

In [1], it was proposed to model hardware imperfections
with either a continuous Brownian Bridge process for the
DAC or a Volterra series for the power amplifier. Device
identification was then performed via standard hypothesis
testing techniques. One drawback of this approach is that it
has access to the decoded data and the inputs and outputs of
each element of the transmit chain. This renders this approach
impractical for most applications since it requires input-output
measurements of individual components of each device that
we wish to identify. Other works such as [2], [3], and [4] first



Cplx Conv 1 Cplx Conv 2 Cplx Conv 3 Cplx Conv 4 Cplx Conv 5 Cplx FC 1 Cplx Conv FC 2 qφ(z|x)

#units 32 64 64 128 128 512 256 128
filter width 1 3 8 16 16 − − −

stride 1 1 3 8 8 − − −
activation Cplx Cardioid Cplx Cardioid Cplx Cardioid Cplx Cardioid Cplx Cardioid Cplx Cardioid Cplx Cardioid −

TABLE I: GMVAE encoder architecture

extract traditional RF features and a classifier or clustering
algorithm is trained on those features. These approaches are
usually designed for a specific communications protocol and
signal modulation scheme. Deep learning based approaches are
just beginning to be explored for the RF device identification
problem, see [5] and [6], where complex-valued digitized RF
signals are provided to a convolutional network architecture for
classification. In [5], standard deep architectures are employed
for device identification, but they require accurate carrier
synchronization. The authors show results only for 7 ZigBee
Pro devices. Learned deep probabilistic modeling has received
little to no attention in the RF domain.

III. GENERATIVE RF SIGNAL MODELING

A. The Canonical Model

The ideal signal transmitted by a wireless device can be
expressed mathematically as

x (t) = Re

[
A

(
hre ∗ are (t) cos (ω(t))

+ jhim ∗ aim (t) sin (ω(t))

)
ej2πfct

]
, (1)

where hre and him are the impulse responses of the in-phase
and quadrature reconstruction filters that make up the DAC,
a(t) is the modulated digital signal amplitude, fc is the carrier
frequency, and A is the gain of the power amplifier. The
complex IQ signal at the receiver side can be modeled as
r(t) = x(t) ∗ hc + η(t), where hc is the complex-valued
impulse response of the propagation channel, ∗ denotes the
convolution operator, and η(t) is a Gaussian noise component
∼ CN (0, σ2

n). As discussed in Section I, hardware imperfec-
tions cause the transmitted signal to deviate from its ideal
representation. Since the DAC reconstruction filters are usually
realized as relatively low-order analog filters, we can assume
that the device specific features we are extracting occupy a
low-dimensional subspace, according to the findings in [1].
In the sequel, we focus on learning a probabilistic model of
these low-dimensional features from minimally pre-processed
RF data.

B. Variational Autoencoder with Gaussian Mixture Prior

In general, the transmitter components that make devices
(even from the same manufacturing lot) measurably different
can be modeled as linear or nonlinear transformations of the
inputs plus an additive noise component, y = Ah+η, where
the component model A ∈ Cm×d, is a matrix whose elements
are functions of the input vector, and h ∈ Cd×1 is a vector
which represents the component parameters of the device. In

most applications we do not have access to the component’s
input and output signals to solve for the device parameters. To
account for this, we leverage the knowledge that the transmitter
components can be modeled by a small number of parameters
and propose the following generative signal model to learn
low dimensional features of RF devices,

y ∼ cat (1/K) (2a)

z ∼ CN
(
µz (y) , diag

(
σ2
z (y)

))
(2b)

x ∼ CN
(
µx (z) , diag

(
σ2
x (z)

))
, (2c)

where K is the number of devices, y the device id, z
is the low-dimensional device representation, i.e., the latent
variables, and x is the observed data. As stated previously, the
generative process above implies that the marginal probability
distribution of the latent variables is a Gaussian Mixture [7].
The posterior distribution, p (z, y|x), is usually intractable
under a non-linear inference model such as a neural network.
However, by using a variational approximation q (z, y|x) to
the true posterior, the log marginal likelihood of x can be
lower-bounded and subsequently optimized by the Evidence
Lower Bound (ELBO),

L (θ, φ;x) = Eqφ(z,y|x) [log pθ (x|z)]
−DKL (qφ (z, y|x) || p (z, y)) , (3)

where DKL (q||p) is the Kullback-Liebler divergence be-
tween probability distributions q and p. We parameterize the
inference network, qφ (z, y|x), and the generative network,
pθ (x|z, y), using neural networks, and learn their parameters
by maximizing the ELBO and using the reparameterization
trick [8]. In this work, we assume that device labels are
available for training. The rationale for this assumption is due
to the fact that the devices are nominally identical. Without
any initial feature extraction, the model will fail to converge
to a meaningful solution. Thus, once the device label has been
observed, we optimize,

L (θ, φ;x) = Eqφ(z|x) [log pθ (x|z)]
−DKL (qφ (z|x) || p (z|y)) . (4)

Note that µz (y) and σ2
z (y) are learned functions of the device

label.

C. RF sequence processing

Since digitized RF signals can be viewed as a time series, we
employ sequence processing techniques to obtain a significant
processing gain. We achieve this by exploiting the fact that
a single device will transmit several bursts of data while
attempting to gain access to a network. Here, a burst refers
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Accuracy: 96.4%
Std. Dev: 0.80%

5 cross-validation splits
Colors correspond to device label

Accuracy: 84.7%
Std. Dev: 0.473%

3 cross-validation splits
Colors correspond to device label

Out-Of-Library Detection Accuracy: 92.9%
False Positive Rate: 2.90%

cyan: detected out-of-library devices
yellow: missed out-of-library devices

Fig. 1: Umap plots on 100 device classification, 500 device classification and 90/10 out-of-library detection tasks.

to the transmission of a data message. Let X = {xi}Mi=1

be a sequence of M non-overlapping time windows of IQ
data from the same device, where xi ∈ Cn. Note that X is
allowed to contain data from multiple bursts. The M latent
vectors zi should therefore be identical, and we denote this
common latent vector as z. We can then model zi|xi =
z + ηi, where ηi is a zero-mean Gaussian noise component.
That is, the latent variables of each sequence element are noisy
observations of the sequence-level latents, z, representing the
device. Assuming that the elements of the sequence are iid,
we compute the sequence-level latent representation, as the
maximum likelihood estimate of z, 1

M

∑M
i=1 zi. The lower

bound for the sequence becomes,

L (θ, φ;X) =

M∑
i=1

Eqφ(z|X) [log pθ (xi|z)]

−DKL (qφ (z|X) || pθ (z|y)) . (5)

In practice, this means that we process each burst in the se-
quence independently, then integrate the learned latent samples
together by taking their mean.

Despite the truth labels, it is easy for the optimizer to get
stuck in bad local minima. This is because we are trying to
optimize pθ (z|y) jointly with qφ (z|X). Therefore, we need to
enforce samples drawn from the prior to be discrimative, while
at the same time minimizing DKL (qφ (z|X) || pθ (z|y)). To
achieve this we add a small fully-connected classification head
p (y|z) with cross entropy loss that classifies inputs z that are
sampled from p (z|y). This means that we are optimizing

Ltotal = L (θ, φ;X) + log pθ (y|z) . (6)

IV. EXPERIMENTS

We now present results showing the performance of our
method using a dataset provided by the DARPA Radio
Frequency Machine Learning Systems (RFMLS) program.
Previous RF deep learning applications were often limited
in scope due to the small datasets that they operated on.
The RFMLS dataset, however, contains terabytes of labeled

raw RF complex-valued data from thousands of IoT devices
conforming to the IEEE 802.11a and 802.11g specifications,
which allowed us to appropriately analyze our model and the
results. Out of privacy concerns, the signal data is limited to
contain only administrative packets.

Here, we present results on the task of identifying 100, and
500 devices collected “in the wild”, with all the impairments
and artifacts that are present in real world data. We also show
the performance of our model against a high Signal-to-Noise
Ratio (SNR) dataset of 19 devices, collected in a laboratory
environment, for which the signals are identical bit for bit.
No attempt was made to control the channel through which
each device transmitted these bit-for-bit identical sequences.
Additionally, we present results on an OOD detection task
using a dataset of 100 devices where 90 devices were used to
train the model and the remaining 10 devices were considered
as OOD.

For each of these experiments, we employed an 80%/20%
train/test split. The 100-item, 500-item and bitwise identical
datasets respectively contain 109K, 28K, and 11K signals
per device. The network architecture for the encoder is shown
in Table I. In the encoder network all layers are complex-
valued except the last layer which outputs the parameters of
the approximate posterior. All complex-valued layers were
implemented as described in [9]. The decoder network consists
simply of three complex-valued fully-connected layers. In all
experiments, the model was trained using the RMSProp opti-
mizer with a mini-batch size of 64, a 0.0005 learning rate and
no gradient clipping. We used the complex cardioid activation
function [10] in all complex-valued layers. Our models were
trained for 100, 000 steps. To obtain the classification results
we use pθ (y|z) defined in Equation (6) as our classifier. Some
hardware components can provide a signature that could be
used for classification, such as the carrier frequency offset.
However, these signatures can vary slowly over time as a func-
tion of the physical environment. Such time-varying signatures
would prevent us from correctly identifying a particular device
if it has drifted at inference time. To mitigate this we perform



Fig. 2: 100 in-the-wild devices. Evaluation set
accuracy as a function of the sequence length
M .

data augmentation during training, where random frequency
offsets are applied to the signals prior to being consumed
by the network. This augmentation prevents the model from
learning these signatures as discriminative features.

A. Classification Results

The proposed model achieves excellent results in the tra-
ditional classification setting on both the 100 and 500 device
datasets. We cross-validated the results on multiple random
train/test splits and list the results in Figures 1a and 1b.
Furthermore, we conducted an additional test to assert that
our model is learning features that are not correlated with the
device’s MAC address. Specifically, we trained the model on a
dataset of 19 devices with the same MAC address and bitwise-
identical signals and obtained 99.8% classification accuracy on
the test set. This verifies the assumption that the model can
learn discriminative features that are intrinsic to the physical
device.

We demonstrate the advantage of our sequence-processing
approach in Figure 2. To perform this test, we generated seven
different instances of the 100 device dataset with varying
sequence of lengths. Each dataset was made with 1K signals
per device. This means that there are thirty times fewer
sequences per device in the M = 30 dataset than there are
in the M = 1 dataset. The results confirm that operating
on multiple signals simultaneously helps to consolidate the
hardware’s unique fingerprint. Note that the accuracy is lower
for this experiment due to the smaller number of training
samples as the sequence length grows.

Results from training the model on signals with random
SNR values and evaluating on signals with set SNR in are
shown in Figure 3. We artificially imposed the SNR by
assuming that the burst is entirely comprised of the relevant
signal and then elevating the noise floor to reach a desired
signal-to-noise ratio. Due to assuming that the signals are
noiseless, the reported SNR is an upper bound on the true
signal-to-noise ratio of the data.

Fig. 3: 100 in-the-wild devices. Evaluation set
accuracy as a function of SNR.

B. Out of Distribution Detection

We now test our ability to detect OOD devices using the
proposed model. For this, we created a dataset by removing
10 of the devices from both the train and test splits of the
100-device classification dataset from Figure 1a to test if our
model could identify the signals from these 10 devices as being
OOD. We then trained a model on the remaining 90 devices
and tested for in-distribution and out-of-distribution detection
by operating on the union of the test-set devices and out-of-
library devices, we refer to this union as the “inference” device
set.

In order to detect whether a signal in the inference set is
not from the training distribution, we exploit the probabilistic
nature of our model as follows: we classify the inference sig-
nals using the trained model, then we perform dimensionality
reduction, using UMAP [11], on the latent representations
of the inference signals as well as the training set signals
and the mean vectors of the model’s GMM. Once we have
obtained the low-dimensional projections, we perform a simple
Z-Test on the UMAP-space distances from each of the latent
representations in the inference set to its assigned Gaussian
cluster. Using this procedure, our model correctly detected
92.9% of the out-of-library signals in the 90/10 dataset. The
false positive rate of test-set devices that got detected as out-
of-library was 2.9%. The latent representation can be seen in
Figure 1c. Note that the new devices land in distinguishable
clusters.

V. CONCLUSIONS AND FUTURE WORK

We have presented a sequence based probabilistic model for
classification of IoT devices. It imposes a Gaussian Mixture
prior on the sequence-level latent variables. We have shown
excellent classification accuracy on real datasets of 100 and
500 devices. We analyzed these results with respect to relevant
data variations and asserted that the learned features are inde-
pendent of the signal payloads. Furthermore, we have shown
that the model can recognize OOD devices with high accuracy
and a low false positive rate. Future work includes leveraging
the probabilistic foundations of the model to investigate larger
population sizes (over 1000 devices), and performing low-shot
learning on detected OOD devices.



ACKNOWLEDGEMENT

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

REFERENCES

[1] Adam C Polak, Sepideh Dolatshahi, and Dennis L Goeckel, “Identifying
wireless users via transmitter imperfections,” IEEE Journal on selected
areas in communications, vol. 29, no. 7, pp. 1469–1479, 2011.

[2] S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “Gtid: A technique
for physical deviceanddevice type fingerprinting,” IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 5, pp. 519–532, Sept.
2015.

[3] Ke Gao, C. Corbett, and R. Beyah, “A passive approach to wireless
device fingerprinting,” in Proc. IEEE/IFIP Int. Conf. Dependable
Systems Networks (DSN), June 2010, pp. 383–392.

[4] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device fingerprinting
to enhance wireless security using nonparametric bayesian method,” in
Proc. IEEE INFOCOM 2011, Apr. 2011, pp. 1404–1412.

[5] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for
RF device fingerprinting in cognitive communication networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–
167, Feb. 2018.

[6] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Commu-
nications Magazine, vol. 56, no. 9, pp. 146–152, Sept. 2018.

[7] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning
Zhou, “Variational deep embedding: An unsupervised and generative
approach to clustering,” arXiv preprint arXiv:1611.05148, 2016.

[8] Auto-encoding variational bayes, 2013.
[9] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep

Subramanian, João Felipe Santos, Soroush Mehri, Negar Rostamzadeh,
Yoshua Bengio, and Christopher J. Pal, “Deep Complex Networks,”
arXiv:1705.09792 [cs], May 2017, arXiv: 1705.09792.

[10] P. Virtue, S. X. Yu, and M. Lustig, “Better than real: Complex-valued
neural nets for mri fingerprinting,” in Proc. IEEE Int. Conf. Image
Processing (ICIP), Sept. 2017, pp. 3953–3957.

[11] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap:
Uniform manifold approximation and projection,” arXiv preprint
arXiv:1802.03426, 2018.


