
Abstract- A modern navigation system integrates data from 
different sensors that have different error statistics, 
including biases.  For example, inertial measurement units 
(IMUs) are known to have biases and other errors, and it is 
common to allocate states in the filter for estimating such 
errors.  However, models for such biases are typically based 
on some assumptions about error statistics, such as a 
random walk for the bias magnitude.  When these 
assumptions are incorrect, a new approach is required.  
Measurements from a barometric altitude sensor present an 
example: a bias may change if a user steps in or out of a 
building, or if a forced-air heating system is turned on/off 
while the user is in a building.  In cases like this, a bias may 
exhibit a jump.  In another example, one may need to watch 
for faults in the data that may occur due to equipment 
malfunction.		 
If the magnitude of a measurement error is large enough, a 
measurement fault can be detected in a single epoch by 
using measurement redundancy.  An example of such 
algorithm is the Receiver Autonomous Integrity Monitor 
(RAIM), which is widely used in GPS measurement 
processing.  However, biases in the measurements can be 
small enough to make their detection in a single epoch 
difficult.  In this paper, we present an algorithm for 
detecting hidden biases in the measurements.  Unlike the 
RAIM algorithm, we use redundancy not just across 
measurements in a single epoch, but also over time.  By 
leveraging time history, we are able to detect small, 
otherwise hidden biases and faults in sensor measurements.   

This approach requires that the navigation system employs 
an IMU or some other time update mechanism, which 

“stitches together” the user state estimates over time.  The 
algorithm runs several independent processing threads, 
comparing user states with different sensors (or channels) 
excluded.  The key challenge in this approach is to minimize 
the computational load, so that processing requirements 
scale less than the number of threads.  We achieve this goal 
by observing that most computations in the filter are 
common across all threads and can be recycled.   

As the result of the computation, we arrive at bias/fault 
estimates for each sensor (or a measurement channel).  
Obviously, the desirable value for a measurement error is 
close to zero, and the decision on the existence of a bias or a 
fault in a sensor must be made based on two pieces of data: 
(1) a bias/fault estimate and (2) an uncertainty of this 
estimate.  The latter requires a separate computation; 
again, the key for its use in real applications is to minimize 
the processing requirements.  We derive an analytical 
recursive formulation, which updates the uncertainty for 
fault estimate sequentially, using minimum resources.  With 
the fault estimate and its uncertainty in hand, a decision on 
fault existence can be made using a chi-square test or a 
similar approach. 

These algorithms have been implemented and tested on 
simulated and on real data. We present results that 
illustrate detection of small, hidden faults in the data.   
 

I. INTRODUCTION 

To borrow a phrase, a data fusion engine is able to account for 
measurement errors if these errors are “known knowns”, but 
remains vulnerable to “unknown unknowns”.  Specifically, 
hidden biases in the data are dangerous because they are 
exacerbated, and not mitigated by processing more data.   

The challenge in detecting a bias is that even if a comparison 
between sensor measurements and the filter solution shows a 
persistent, biased residual, there is no way to know if the 
problem resides in the sensor or in the solution (or both).  For 
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example, a fault in one sensor may skew the solution, producing 
biases in measurement residuals for other sensors.     

The only way to attribute a bias to a particular sensor is to 
compare that sensor’s measurements to a filter solution that was 
obtained without using that sensor.  Essentially, this is the path 
taken by the well-known RAIM algorithm for GPS: it computes 
a position using all but one channel and repeats this 
computation in a round robin sequence for all channels [1, 2].   

We extend this basic idea by: (1) generalizing it to nearly any 
sensor and (2) applying it over time to detect biases that may be 
too small to be detected in a single epoch.  (In fact, the very 
notion of a “bias” is statistical; a single deviation of a 
measurement from the expected value is classified as an outlier 
or as occurring due to measurement noise.)  This approach 
requires that the navigation system employs an IMU or some 
other time update mechanism, which “stitches together” user 
state estimates over time.  The general idea of leveraging 
propagation to detect biases was also used in [3].  Our algorithm 
runs several independent processing threads, comparing user 
states with different sensors (or channels) excluded.  The key 
challenge in this approach is to minimize the computational 
load, so that processing requirements scale less than the number 
of threads.  We achieve this goal by observing that most 
computations in the filter are common across all threads and can 
be recycled.   

As the result of the computation, we arrive at bias/fault 
estimates for each sensor (or a measurement channel).  
Obviously, the desirable value for a measurement error is close 
to zero, and the decision on the existence of a bias or a fault in 
a sensor must be made based on two pieces of data: (1) a 
bias/fault estimate and (2) an uncertainty of this estimate.  The 
latter requires a separate computation; again, the key for its use 
in real applications is to minimize the processing requirements.  
Below, we derive an analytical recursive formulation, which 
updates the uncertainty for fault estimate sequentially, using 
minimum resources.  With the fault estimate and its uncertainty 
in hand, a decision on fault existence can be made using a chi-
square test or a similar approach. 

Before proceeding further, we need to differentiate between 
biases of various types.  A modern navigation system integrates 
data from different sensors that have different error statistics, 
including biases.  For example, inertial measurement units 
(IMUs) are known to have biases and other errors, and it is 
common to allocate states in the filter for estimating such errors.  
However, models for such biases are typically based on some 
assumptions about their statistics, such as a random walk for the 
bias magnitude.  On the contrary, measurements from a 
barometric altitude sensor often contain a bias, which may 
change if a user steps in or out of a building, or if a forced-air 
heating system is turned on/off while the user is in a building.  
In cases like this, a bias may exhibit a jump.  It is difficult to 

account for such bias by adding a state in the filter, which is the 
motivation for developing a new method for detecting it. 

An example of detrimental bias effects in navigation is 
described in Jules Verne’s novel “Dick Sand, A Captain at 
Fifteen”.  A plot is hinged on an episode when at night a villain 
has put a piece of iron under a ship’s compass to change the 
course. This created a bias in the heading measurements, and 
the ship ended up in a wrong place, with many adventures to 
follow. Fig. 1 shows a quote from this novel and an etching by 
Henri Meyer for this episode.  

II. MEASUREMENT EXCLUSION ALGORITHM 

Our bias detection algorithm compares results from multiple 
threads: a default thread that uses all sensors and other threads, 
each with data from one sensor excluded.  This exclusion is 
defined in a particular way: it is if a measurement is processed 

 
Figure 1. “In fact, it was a piece of iron, whose influence had just 
altered the indications of the compass. The magnetic needle had 
been deviated, and instead of marking the magnetic north, which 
differs a little from the north of the world, it marked the 
northeast. It was then, a deviation of four points; in other words, 
of half a right angle.” Jules Verne, Dick Sand, A Captain at 
Fifteen.  



with a zero residual.  In this case, the state vector is not updated, 
but the covariance matrix is.  This approach allows us to 
compare data from different threads in the “apples to apples” 
way.  

If no bias is detected, the algorithm defaults to the filter output 
that uses all available sensors; if a bias is present, data from the 
offending sensor are excluded from processing.   

The standard Kalman filter measurement update for state x  is 
as follows: 

zKxx Δ+= ~ˆ   (1) 

where K  is the Kalman gain, and xHzz ~⋅−=Δ  is a 
measurement residual.   

If a measurement is skipped from processing in one thread, but 
is processed in another, the difference in the state between these 
threads is given by =−=Δ xxx ~ˆ zKΔ .  For every 
subsequent measurement update (whether from the same or a 
different sensor), this difference is scaled by the following 
multiplier: 

 ( ) 1−Δ−=Δ n
T
nnn xHKIx !!
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(Compare this to the standard Kalman filter equation for the 

covariance update: ( ) 1
ˆ~
−−= n

T
nnn PHKIP ).   

If multiple measurements from a particular sensor are skipped 
from processing over time, the combined effect is as follows: 

where nΦ  is the matrix for the propagation update, and where 

( )∏ −Φ=
m

T
mnmnnn HKI ,,α .  It is clear from the last line in 

Equation (3), that this equation can be updated sequentially, 
without tracing back all previous time steps and without doing 
all the bookkeeping for it.  Indeed, two successive estimates for 

nx
!

Δ  are connected as follows: 

Equation (4) shows that we do not need to do all of the 
cumbersome computations in Equation (3); rather we can 
update x

!
Δ  sequentially.  Moreover, if the fusion engine uses a 

Kalman filter, all quantities in Equation (4) are already 
computed in the course of the normal Kalman filter processing, 
and can be applied to update x

!
Δ .  At each step, we only need 

to apply a previously computed matrix for the covariance 
update, and add a new term from the new measurement.  This 
greatly reduces the computation load and makes this fault 
detection algorithm economical.   

III. SMALL BIAS DETECTION 

Our goal is to detect hidden biases, which are not necessarily 
evident from a single measurement residual.  We achieve this 
goal by processing the residuals in question over time.  The 

estimate for the measurement bias n
qb  is as follows: 

( ) n
q

n
q

n
q zbb Δ−+= − αα 11  (5) 

 

where q  is the sensor id; n
qzΔ  is the a priori residual for 

measurement from this sensor with respect to the thread, which 
excludes data from sensor q ; n  is the epoch; 10 <<α  is a 

parameter.  In practice, values 11 <<−α  will smooth results 
over longer time, enabling us to detect hidden biases.  If the 

value of  estimated n
qb  is non-zero in the statistical sense for 

measurements from sensor q  only, then measurements from 
this sensor contain a bias.   

The last statement requires us to define a criterion for n
qb  being 

statistically non-zero.  We do this by computing the variance 

for n
qb .  This computation is complicated by the fact that n

qb  

and 1−n
qb  are correlated.  The rest of this section provides a 

derivation for the variance of n
qb .   

We square (5) and compute the mathematical expectation of the 
result to get: 
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where we denote n
q

mn
q

n
mq zb Δ= −δλ ,

;  n
q

n
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n
q bbb −=δ ; and ...   is the 

mathematical expectation.   

This equation can be used iteratively for updating the value of 

bias variance ( )2n
qb . The only difficulty is to compute n

q 1,λ , 

which describes correlations between the previous bias estimate 

and the new residual.  Next, we proceed to computing n
q 1,λ .  

The key idea is to do it recursively: 

 

where we denote the term describing successive correlations in 

the residuals as mn
q

n
q

n
mq zz −ΔΔ=,κ .  Residuals are correlated, 

because they are computed with respect to the user state, which 
is propagated from one epoch to another.  This process 
propagates any errors in the state as well, producing 
correlations between epochs.  We can represent these 
correlations by: 
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where 1−Δ n
q

n
q zρ  is the scaled residual from the same sensor for 

the previous epoch, and n
qν  is the uncorrelated part of the new 

residual (due to the measurement noise at the current epoch and 
all measurements from other sensors that have been processed 
between the measurements from sensor q   at the previous and 
the current epoch).  Then: 
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Substitution of (9) in (7) and applying (7) recursively yields: 

By replacing indices 1+→ nn , we get: 

From comparing the last two equations, we can see that 
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This equation allows us to update n
q 1,λ  sequentially.  All 

quantities in the right-hand side are relatively easy to compute.  
From Kalman filter update equations, we get: 
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To compute n
qρ , we use 
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We note that any error in the state scales with processing every 
measurement, whether from the sensor in question or from a 
different sensor.  In addition, it scales during the state 
propagation (the time update step of the Kalman filter 
processing.  Mathematically, this is expressed as follows: 

 

where nΦ  is the time update transition matrix; the product 

( )∏ −−−
l

n
l

n
l HKI 11  is computed over all measurements, starting 

from (and including) measurement q   during epoch 1−n ; and 
the product ( )∏ −

j

n
j

n
j HKI  is computed over all measurements 

during epoch n , which are preceding measurement q ).  Even 
though it may seem that this is a cumbersome computation, it is 
easily implemented and is not computationally intensive, as all 
scaling multipliers are computed in the course of regular 
Kalman filter processing.  Scaling is applied successively, as 
measurements are being processed.   

IV. SIMULATION RESULTS 

With the smoothed value and an estimated variance for the bias 
computed, it is straightforward to implement a criterion to 
detect a bias.  Simply speaking, we declare that a measurement 
is biased if the absolute value of the estimated bias exceeds a 

threshold, e.g. bMσ  , where M  is a configurable multiplier 

(e.g., 3=M ) and bσ  is the standard deviation for the bias 

(the square root of its estimated variance, as derived in the 
previous section).  Since we detect a bias over multiple epochs, 
smoothing leads to a smaller variance, and even a small bias (in 
comparison to the measurement variance) can be detected.  This 
section presents simulated results that illustrate this idea.   

The simulation scenario is deliberately simple: a user measures 
ranges to four distant RF sources (e.g., GPS satellites), 
randomly positioned in the upper hemisphere.  The user 
trajectory is a straight line.  The state is the user position and 
user velocity (6 states), and the propagation algorithm is an 
extrapolation of the current state using the velocity estimate.  
IMU is not modeled in this scenario.  We set the user velocity 
to 1.5 m/s (a walking speed), the process noise variance for 
velocity to 10-2 m2/s2, and the measurement variance to 1 m2.  
The smoothing parameter is set to 99.0=α .  Approximately at 
t=1000 s, measurements from Beacon 1 gradually acquire a bias 
of 1 m.  This bias is on the order of the measurement noise, and 
would be difficult to detect using conventional methods.   

Fig. 2 shows a segment of the trajectory approximately at the 
time when Sensor 1 acquired a bias.  Positions in the (x, y) plane 
are shown as computed from two threads, one using all sensors, 
and another with Sensor 1 data excluded.  Since the bias is 
small, there is no obvious sign of a bias.   

Fig. 3 shows the results of bias estimation along with its 
standard deviation.  After the initial period of convergence, the 

 
Figure 3. Simulated (red) and estimated bias (magenta).  The 
± standard deviation (blue) shows the convergence of the 
estimate. 
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Figure 2. A segment of user trajectory as computed by two 
threads 



estimated bias (the red curve) follows the true value (magenta 
curve) with some lag.   

The smoothing parameter 9 defines a trade-off between the 
robustness and the time lag for bias estimation.  A larger value 
tallies data over longer time, hence a smaller bias can be 
detected, at the cost of taking it longer to detect.  This is 
illustrated in Fig. 4, which shows the RMS bias estimation error 
as the function of the smoothing parameter.  For smaller values 
(e.g., 9 = 0.8), there is not enough data to estimate the bias 
accurately, and the bias estimation error is relatively large.  For 
very large values (e.g., 9 = 0.99), the lag in the bias estimate 
eats into the estimate, increasing the total RMS error.  Yet, there 
is a sweet spot, where the bias is estimated relatively accurately 
and within an acceptable time.   

V. REAL DATA RESULTS 

A performance for real data is always the key test of any new 
algorithm.  We used the data, which were originally  collected 
for the DARPA’s ASPN program [4].  There are several 
datasets available, each with multiple sensors.  Fortunately for 
other purposes and unfortunately for us, there were few 
occurrences of biases in the data.  One exception is a particular 
GPS channel on a driving test, which we used for validation of 
the bias detection algorithm. 

In the beginning of the test, the vehicle made two loops over 
several city blocks.  Fig. 5 shows GPS residuals for one the 
satellites with respect to the true user position (GPS residuals 
are shown with magenta dots; please temporarily disregard 
other data shown in this figure, as they will be referenced later).  
We have removed the ionospheric delay, the mean clock error 
and the linear clock drift for this plot.  Note that residuals 
exhibit several jumps, as if there is a bias that appears and 

disappears in the data.  Below, we concentrate on two such 
events, which are circled in the figure.   

In both cases, a bias of about 4 meters with respect to the 
ambient value appears and then stays for few tens of seconds.  
These events start when the vehicle stops at the same 
intersection and almost exactly at the same location. This may 
point to some local conditions at this particular location, which 
are the cause of the bias.  Fig. 6 shows a segment of the vehicle 
trajectory (white line).  The time periods when the pseudorange 
from a particular satellite was affected by bias are shown in 
green and in blue lines that overlap the white trajectory line. 
The azimuth towards the satellite in question is shown by a 
short red line.  One can clearly see that the line of sight to the 
satellite is in the direction of a nearby building at both locations 
where the bias events have started.  The satellite elevation here 
was 1.10 rad.  It is not clear if the building has obstructed the 
line of sight to the satellite when the vehicle was stopped 
approximately at the viewpoint of this picture.  

While the above argument on the bias origins is not definitive, 
one thing is clear: pseudorange measurements were affected by 
biases, and these biases switched on and off, likely due to 
effects of the local environment.  This is exactly the type of 
faults, which our bias detection algorithm is designed to 
mitigate.   

 
Figure 4. Bias estimation error as a function of the smoothing 
parameter 

 
Figure 5. Pseudorange residuals (magenta), a bias estimate (blue)  
and ± standard deviation (red) in GPS data for a selected 
satellite.. 



We ran the bias detection algorithm for these pseudorange GPS 
data.  The results are shown in Fig. 5 along with the 
pseudorange measurement residuals.  We can see that the bias 
estimate (the blue line) has spiked above 1G threshold during 
both bias events.   

The correspondence between the “detected” bias events and 
“true” ones is not one-to-one. There are several possible reasons 
for that: 

1. “True” bias events are defined in the eyes of a beholder 
2. Criteria for a detected bias should include a sigma 

multiplier threshold and the duration of the event 
3. Bias in the measurements, if any, is in the single digit 

meters – quite small for pseudorange. 

The last point speaks to the good performance of this algorithm: 
even relatively small biases can be detected.   

VI. CONCLUSION 

Since a Kalman filter is often defined as a minimum variance, 
unbiased estimate, it is clear that biases in the measurements 
may have a detrimental effect on filter output.  Moreover, in a 
contrast to zero-mean noise, a bias is not averaged out by a 
filter.  This creates a motivation for developing an algorithm 
that detects possible hidden biases in the measurements. Our 
algorithm reuses computations from, and is designed to be 
integrated with, a Kalman filter.  This makes it computationally 
efficient.  The idea can be traced to the RAIM algorithm; 
however, we exploit data over time, which makes it possible to 
detect relatively small biases.   
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Figure 6. True trajectory (white), trajectory segments with bias 
events (blue and green) and the direction to the satellite, which 
is associated with a pseudorange bias (red).   


