
Abstract- A modern navigation system integrates data from
different sensors that have different error statistics,
including biases. For example, inertial measurement units
(IMUs) are known to have biases and other errors, and it is
common to allocate states in the filter for estimating such
errors. However, models for such biases are typically based
on some assumptions about error statistics, such as a
random walk for the bias magnitude. When these
assumptions are incorrect, a new approach is required.
Measurements from a barometric altitude sensor present an
example: a bias may change if a user steps in or out of a
building, or if a forced-air heating system is turned on/off
while the user is in a building. In cases like this, a bias may
exhibit a jump. In another example, one may need to watch
for faults in the data that may occur due to equipment
malfunction.		
If the magnitude of a measurement error is large enough, a
measurement fault can be detected in a single epoch by
using measurement redundancy. An example of such
algorithm is the Receiver Autonomous Integrity Monitor
(RAIM), which is widely used in GPS measurement
processing. However, biases in the measurements can be
small enough to make their detection in a single epoch
difficult. In this paper, we present an algorithm for
detecting hidden biases in the measurements. Unlike the
RAIM algorithm, we use redundancy not just across
measurements in a single epoch, but also over time. By
leveraging time history, we are able to detect small,
otherwise hidden biases and faults in sensor measurements.

This approach requires that the navigation system employs
an IMU or some other time update mechanism, which

“stitches together” the user state estimates over time. The
algorithm runs several independent processing threads,
comparing user states with different sensors (or channels)
excluded. The key challenge in this approach is to minimize
the computational load, so that processing requirements
scale less than the number of threads. We achieve this goal
by observing that most computations in the filter are
common across all threads and can be recycled.

As the result of the computation, we arrive at bias/fault
estimates for each sensor (or a measurement channel).
Obviously, the desirable value for a measurement error is
close to zero, and the decision on the existence of a bias or a
fault in a sensor must be made based on two pieces of data:
(1) a bias/fault estimate and (2) an uncertainty of this
estimate. The latter requires a separate computation;
again, the key for its use in real applications is to minimize
the processing requirements. We derive an analytical
recursive formulation, which updates the uncertainty for
fault estimate sequentially, using minimum resources. With
the fault estimate and its uncertainty in hand, a decision on
fault existence can be made using a chi-square test or a
similar approach.

These algorithms have been implemented and tested on
simulated and on real data. We present results that
illustrate detection of small, hidden faults in the data.

I. INTRODUCTION

To borrow a phrase, a data fusion engine is able to account for
measurement errors if these errors are “known knowns”, but
remains vulnerable to “unknown unknowns”. Specifically,
hidden biases in the data are dangerous because they are
exacerbated, and not mitigated by processing more data.

The challenge in detecting a bias is that even if a comparison
between sensor measurements and the filter solution shows a
persistent, biased residual, there is no way to know if the
problem resides in the sensor or in the solution (or both). For

Detection of Biases and Faults in Navigation
Sensor Measurements

Sasha Draganov
Expedition Technology, Inc.

45195 Business Court, Suite 450
Dulles, VA 20166

This research was sponsored by DARPA (contract number
HR0011-15-C-0045). The views, opinions, and/or findings
expressed are those of the author and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government. Approved for public
release. Distribution unlimited.

ION PLANS 2016

example, a fault in one sensor may skew the solution, producing
biases in measurement residuals for other sensors.

The only way to attribute a bias to a particular sensor is to
compare that sensor’s measurements to a filter solution that was
obtained without using that sensor. Essentially, this is the path
taken by the well-known RAIM algorithm for GPS: it computes
a position using all but one channel and repeats this
computation in a round robin sequence for all channels [1, 2].

We extend this basic idea by: (1) generalizing it to nearly any
sensor and (2) applying it over time to detect biases that may be
too small to be detected in a single epoch. (In fact, the very
notion of a “bias” is statistical; a single deviation of a
measurement from the expected value is classified as an outlier
or as occurring due to measurement noise.) This approach
requires that the navigation system employs an IMU or some
other time update mechanism, which “stitches together” user
state estimates over time. The general idea of leveraging
propagation to detect biases was also used in [3]. Our algorithm
runs several independent processing threads, comparing user
states with different sensors (or channels) excluded. The key
challenge in this approach is to minimize the computational
load, so that processing requirements scale less than the number
of threads. We achieve this goal by observing that most
computations in the filter are common across all threads and can
be recycled.

As the result of the computation, we arrive at bias/fault
estimates for each sensor (or a measurement channel).
Obviously, the desirable value for a measurement error is close
to zero, and the decision on the existence of a bias or a fault in
a sensor must be made based on two pieces of data: (1) a
bias/fault estimate and (2) an uncertainty of this estimate. The
latter requires a separate computation; again, the key for its use
in real applications is to minimize the processing requirements.
Below, we derive an analytical recursive formulation, which
updates the uncertainty for fault estimate sequentially, using
minimum resources. With the fault estimate and its uncertainty
in hand, a decision on fault existence can be made using a chi-
square test or a similar approach.

Before proceeding further, we need to differentiate between
biases of various types. A modern navigation system integrates
data from different sensors that have different error statistics,
including biases. For example, inertial measurement units
(IMUs) are known to have biases and other errors, and it is
common to allocate states in the filter for estimating such errors.
However, models for such biases are typically based on some
assumptions about their statistics, such as a random walk for the
bias magnitude. On the contrary, measurements from a
barometric altitude sensor often contain a bias, which may
change if a user steps in or out of a building, or if a forced-air
heating system is turned on/off while the user is in a building.
In cases like this, a bias may exhibit a jump. It is difficult to

account for such bias by adding a state in the filter, which is the
motivation for developing a new method for detecting it.

An example of detrimental bias effects in navigation is
described in Jules Verne’s novel “Dick Sand, A Captain at
Fifteen”. A plot is hinged on an episode when at night a villain
has put a piece of iron under a ship’s compass to change the
course. This created a bias in the heading measurements, and
the ship ended up in a wrong place, with many adventures to
follow. Fig. 1 shows a quote from this novel and an etching by
Henri Meyer for this episode.

II. MEASUREMENT EXCLUSION ALGORITHM

Our bias detection algorithm compares results from multiple
threads: a default thread that uses all sensors and other threads,
each with data from one sensor excluded. This exclusion is
defined in a particular way: it is if a measurement is processed

Figure 1. “In fact, it was a piece of iron, whose influence had just
altered the indications of the compass. The magnetic needle had
been deviated, and instead of marking the magnetic north, which
differs a little from the north of the world, it marked the
northeast. It was then, a deviation of four points; in other words,
of half a right angle.” Jules Verne, Dick Sand, A Captain at
Fifteen.

with a zero residual. In this case, the state vector is not updated,
but the covariance matrix is. This approach allows us to
compare data from different threads in the “apples to apples”
way.

If no bias is detected, the algorithm defaults to the filter output
that uses all available sensors; if a bias is present, data from the
offending sensor are excluded from processing.

The standard Kalman filter measurement update for state x is
as follows:

zKxx Δ+= ~ˆ (1)

where K is the Kalman gain, and xHzz ~⋅−=Δ is a
measurement residual.

If a measurement is skipped from processing in one thread, but
is processed in another, the difference in the state between these
threads is given by =−=Δ xxx ~ˆ zKΔ . For every
subsequent measurement update (whether from the same or a
different sensor), this difference is scaled by the following
multiplier:

 () 1−Δ−=Δ n
T
nnn xHKIx !!

 (2)

(Compare this to the standard Kalman filter equation for the

covariance update: () 1
ˆ~
−−= n

T
nnn PHKIP).

If multiple measurements from a particular sensor are skipped
from processing over time, the combined effect is as follows:

where nΦ is the matrix for the propagation update, and where

()∏ −Φ=
m

T
mnmnnn HKI ,,α . It is clear from the last line in

Equation (3), that this equation can be updated sequentially,
without tracing back all previous time steps and without doing
all the bookkeeping for it. Indeed, two successive estimates for

nx
!

Δ are connected as follows:

Equation (4) shows that we do not need to do all of the
cumbersome computations in Equation (3); rather we can
update x

!
Δ sequentially. Moreover, if the fusion engine uses a

Kalman filter, all quantities in Equation (4) are already
computed in the course of the normal Kalman filter processing,
and can be applied to update x

!
Δ . At each step, we only need

to apply a previously computed matrix for the covariance
update, and add a new term from the new measurement. This
greatly reduces the computation load and makes this fault
detection algorithm economical.

III. SMALL BIAS DETECTION

Our goal is to detect hidden biases, which are not necessarily
evident from a single measurement residual. We achieve this
goal by processing the residuals in question over time. The

estimate for the measurement bias n
qb is as follows:

() n
q

n
q

n
q zbb Δ−+= − αα 11 (5)

where q is the sensor id; n
qzΔ is the a priori residual for

measurement from this sensor with respect to the thread, which
excludes data from sensor q ; n is the epoch; 10 <<α is a

parameter. In practice, values 11 <<−α will smooth results
over longer time, enabling us to detect hidden biases. If the

value of estimated n
qb is non-zero in the statistical sense for

measurements from sensor q only, then measurements from
this sensor contain a bias.

The last statement requires us to define a criterion for n
qb being

statistically non-zero. We do this by computing the variance

for n
qb . This computation is complicated by the fact that n

qb

and 1−n
qb are correlated. The rest of this section provides a

derivation for the variance of n
qb .

We square (5) and compute the mathematical expectation of the
result to get:

Δ"⃗$ = &''⃗ $Δ($	
+Φ$+,- − &$,01$,02 3 ∙

0

&$,0Δ($56 	+	

Φ$+,- − &$,01$,02 3 ∙
0

	

		Φ$+,- − &$,01$,02 3 ∙
0

&$,0Δ($56	

+⋯ = &''⃗ $Δ($ + 9$&''⃗ $56Δ($56	
										+9$9$56&''⃗ $5:Δ($5: +⋯	

	
	
	
									
(3)

	

Δ"⃗$ = &''⃗ $Δ($ +	
Φ$+,- − &$,01$,02 3 ∙

0

Δ"⃗$56

(4)

,;<=$3
:>>>>>>>>>
= α:,;<=$563

:>>>>>>>>>>>>
+	

(1 − α):,Δ(=$3
:>>>>>>>>>
+ 2α(1 − α)D=,6

$ 	

(6)

where we denote n
q

mn
q

n
mq zb Δ= −δλ ,

; n
q

n
q

n
q bbb −=δ ; and ... is the

mathematical expectation.

This equation can be used iteratively for updating the value of

bias variance ()2n
qb . The only difficulty is to compute n

q 1,λ ,

which describes correlations between the previous bias estimate

and the new residual. Next, we proceed to computing n
q 1,λ .

The key idea is to do it recursively:

where we denote the term describing successive correlations in

the residuals as mn
q

n
q

n
mq zz −ΔΔ=,κ . Residuals are correlated,

because they are computed with respect to the user state, which
is propagated from one epoch to another. This process
propagates any errors in the state as well, producing
correlations between epochs. We can represent these
correlations by:

n
q

n
q

n
q

n
q zz νρ +Δ=Δ −1 (8)

where 1−Δ n
q

n
q zρ is the scaled residual from the same sensor for

the previous epoch, and n
qν is the uncorrelated part of the new

residual (due to the measurement noise at the current epoch and
all measurements from other sensors that have been processed
between the measurements from sensor q at the previous and
the current epoch). Then:

()
()

...

221
2,

21
1,

−−

−

Δ=

Δ=

n
q

n
q

n
q

n
q

n
q

n
q

n
q

z

z

ρρκ

ρκ

(9)

Substitution of (9) in (7) and applying (7) recursively yields:

By replacing indices 1+→ nn , we get:

From comparing the last two equations, we can see that

() () n
q

n
q

n
q

n
q

n
q z 1,

1211
1, 1 λαρραλ +++ +Δ−= (12)

This equation allows us to update n
q 1,λ sequentially. All

quantities in the right-hand side are relatively easy to compute.
From Kalman filter update equations, we get:

() () n
q

nTn
qz

n
q HPHz ~22

+=Δ σ (13)

To compute n
qρ , we use

Then

() 1112

1

~ −−−

−

+

ΔΔ
=

n
q

nTn
qz

n
q

n
qn

q
HPH

zz

σ
ρ (15)

Δ(=$Δ(=$56>>>>>>>>>>>>> = ρ$
=,Δ(=$3

:>>>>>>>>>
=	

ρ$
= FGH: + ,1=$563

2
IJ$561=$56K	

(14)

λ=,6
$ = ;<=$56Δ(=$>>>>>>>>>>>>> =	

,α<=$56 + (1 − α)Δ(=$563Δ(=$
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> =	

		αλ=,6
$ + (1 − α)M=,6

$ 	

(7)

D=,6
$ = (1 − 9)N=$,Δ(=$563

:>>>>>>>>>>>>	

+9(1 − 9)N=$N=$56,Δ(=$5:3
:>>>>>>>>>>>>
+	

+9:(1 − 9)N=$N=$56N=$5:,Δ(=$5O3
:>>>>>>>>>>>>
+ ⋯	

	

(10)

D=,6
$P6 = (1 − 9)N=$P6,Δ(=$3

:>>>>>>>>>	

+9(1 − 9)N=$P6N=$,Δ(=$563
:>>>>>>>>>>>>
+	

+9:(1 − 9)N=$P6N=$N=$56,Δ(=$5:3
:>>>>>>>>>>>>
+ ⋯	

	

(11)

We note that any error in the state scales with processing every
measurement, whether from the sensor in question or from a
different sensor. In addition, it scales during the state
propagation (the time update step of the Kalman filter
processing. Mathematically, this is expressed as follows:

where nΦ is the time update transition matrix; the product

()∏ −−−
l

n
l

n
l HKI 11 is computed over all measurements, starting

from (and including) measurement q during epoch 1−n ; and
the product ()∏ −

j

n
j

n
j HKI is computed over all measurements

during epoch n , which are preceding measurement q). Even
though it may seem that this is a cumbersome computation, it is
easily implemented and is not computationally intensive, as all
scaling multipliers are computed in the course of regular
Kalman filter processing. Scaling is applied successively, as
measurements are being processed.

IV. SIMULATION RESULTS

With the smoothed value and an estimated variance for the bias
computed, it is straightforward to implement a criterion to
detect a bias. Simply speaking, we declare that a measurement
is biased if the absolute value of the estimated bias exceeds a

threshold, e.g. bMσ , where M is a configurable multiplier

(e.g., 3=M) and bσ is the standard deviation for the bias

(the square root of its estimated variance, as derived in the
previous section). Since we detect a bias over multiple epochs,
smoothing leads to a smaller variance, and even a small bias (in
comparison to the measurement variance) can be detected. This
section presents simulated results that illustrate this idea.

The simulation scenario is deliberately simple: a user measures
ranges to four distant RF sources (e.g., GPS satellites),
randomly positioned in the upper hemisphere. The user
trajectory is a straight line. The state is the user position and
user velocity (6 states), and the propagation algorithm is an
extrapolation of the current state using the velocity estimate.
IMU is not modeled in this scenario. We set the user velocity
to 1.5 m/s (a walking speed), the process noise variance for
velocity to 10-2 m2/s2, and the measurement variance to 1 m2.
The smoothing parameter is set to 99.0=α . Approximately at
t=1000 s, measurements from Beacon 1 gradually acquire a bias
of 1 m. This bias is on the order of the measurement noise, and
would be difficult to detect using conventional methods.

Fig. 2 shows a segment of the trajectory approximately at the
time when Sensor 1 acquired a bias. Positions in the (x, y) plane
are shown as computed from two threads, one using all sensors,
and another with Sensor 1 data excluded. Since the bias is
small, there is no obvious sign of a bias.

Fig. 3 shows the results of bias estimation along with its
standard deviation. After the initial period of convergence, the

Figure 3. Simulated (red) and estimated bias (magenta). The
± standard deviation (blue) shows the convergence of the
estimate.

Δ(=$Δ(=$56>>>>>>>>>>>>> = ,1=$3
2
+,- − &Q

$1Q
$3

Q

∙ Φ$ ∙	

+(- − &R
$561R

$56)
R

IJ$561=$56	

(16)

Figure 2. A segment of user trajectory as computed by two
threads

estimated bias (the red curve) follows the true value (magenta
curve) with some lag.

The smoothing parameter 9 defines a trade-off between the
robustness and the time lag for bias estimation. A larger value
tallies data over longer time, hence a smaller bias can be
detected, at the cost of taking it longer to detect. This is
illustrated in Fig. 4, which shows the RMS bias estimation error
as the function of the smoothing parameter. For smaller values
(e.g., 9 = 0.8), there is not enough data to estimate the bias
accurately, and the bias estimation error is relatively large. For
very large values (e.g., 9 = 0.99), the lag in the bias estimate
eats into the estimate, increasing the total RMS error. Yet, there
is a sweet spot, where the bias is estimated relatively accurately
and within an acceptable time.

V. REAL DATA RESULTS

A performance for real data is always the key test of any new
algorithm. We used the data, which were originally collected
for the DARPA’s ASPN program [4]. There are several
datasets available, each with multiple sensors. Fortunately for
other purposes and unfortunately for us, there were few
occurrences of biases in the data. One exception is a particular
GPS channel on a driving test, which we used for validation of
the bias detection algorithm.

In the beginning of the test, the vehicle made two loops over
several city blocks. Fig. 5 shows GPS residuals for one the
satellites with respect to the true user position (GPS residuals
are shown with magenta dots; please temporarily disregard
other data shown in this figure, as they will be referenced later).
We have removed the ionospheric delay, the mean clock error
and the linear clock drift for this plot. Note that residuals
exhibit several jumps, as if there is a bias that appears and

disappears in the data. Below, we concentrate on two such
events, which are circled in the figure.

In both cases, a bias of about 4 meters with respect to the
ambient value appears and then stays for few tens of seconds.
These events start when the vehicle stops at the same
intersection and almost exactly at the same location. This may
point to some local conditions at this particular location, which
are the cause of the bias. Fig. 6 shows a segment of the vehicle
trajectory (white line). The time periods when the pseudorange
from a particular satellite was affected by bias are shown in
green and in blue lines that overlap the white trajectory line.
The azimuth towards the satellite in question is shown by a
short red line. One can clearly see that the line of sight to the
satellite is in the direction of a nearby building at both locations
where the bias events have started. The satellite elevation here
was 1.10 rad. It is not clear if the building has obstructed the
line of sight to the satellite when the vehicle was stopped
approximately at the viewpoint of this picture.

While the above argument on the bias origins is not definitive,
one thing is clear: pseudorange measurements were affected by
biases, and these biases switched on and off, likely due to
effects of the local environment. This is exactly the type of
faults, which our bias detection algorithm is designed to
mitigate.

Figure 4. Bias estimation error as a function of the smoothing
parameter

Figure 5. Pseudorange residuals (magenta), a bias estimate (blue)
and ± standard deviation (red) in GPS data for a selected
satellite..

We ran the bias detection algorithm for these pseudorange GPS
data. The results are shown in Fig. 5 along with the
pseudorange measurement residuals. We can see that the bias
estimate (the blue line) has spiked above 1G threshold during
both bias events.

The correspondence between the “detected” bias events and
“true” ones is not one-to-one. There are several possible reasons
for that:

1. “True” bias events are defined in the eyes of a beholder
2. Criteria for a detected bias should include a sigma

multiplier threshold and the duration of the event
3. Bias in the measurements, if any, is in the single digit

meters – quite small for pseudorange.

The last point speaks to the good performance of this algorithm:
even relatively small biases can be detected.

VI. CONCLUSION

Since a Kalman filter is often defined as a minimum variance,
unbiased estimate, it is clear that biases in the measurements
may have a detrimental effect on filter output. Moreover, in a
contrast to zero-mean noise, a bias is not averaged out by a
filter. This creates a motivation for developing an algorithm
that detects possible hidden biases in the measurements. Our
algorithm reuses computations from, and is designed to be
integrated with, a Kalman filter. This makes it computationally
efficient. The idea can be traced to the RAIM algorithm;
however, we exploit data over time, which makes it possible to
detect relatively small biases.

VII. REFERENCES

1. R. G. Brown et al., GPS RAIM: Calculation of threshold
and protection radius using chi-square methods - a

geometric approach, in Global Positioning System: Inst.
Navigat., 1997, vol. V, pp. 155-179.

2. Parkinson, B. and Axelrad, P., “Autonomous GPS Integrity
Monitoring Using the Pseudorange Residual,”
NAVIGATION, Vol. 35, No. 2, Summer 1988, pp.
255−74.

3. Cong, L., et al., A Fault Detection Method for GNSS/INS
Integrated Navigation System Based on GARCH Model,
Proceedings of the ION 2015 Pacific PNT Meeting,
Honolulu, Hawaii, April 2015, pp. 713-718.

4. http://www.wired.com/2012/06/darpa-gps/

Figure 6. True trajectory (white), trajectory segments with bias
events (blue and green) and the direction to the satellite, which
is associated with a pseudorange bias (red).

